Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38748491

ABSTRACT

Advances in cancer prevention, early detection and treatments have led to unprecedented progress against cancer. However, these advances have not benefited everyone equally. Because of a long history of structural inequities and systemic injustices in the United States, many segments of the US population continue to shoulder a disproportionate burden of cancer. The American Association for Cancer Research (AACR) Cancer Disparities Progress Report 2024 (CancerDisparitiesProgressReport.org) outlines the recent progress against cancer disparities, the ongoing challenges faced by medically underserved populations, and emphasizes the vital need for further advances in cancer research and patient care to benefit all populations.

2.
J Pharm Sci ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38580143

ABSTRACT

The mechanism of loss of propylparaben potency from formulations when in contact with polyvinyl chloride has been determined. It is caused by the adsorption of propylparaben onto polyvinyl chloride surfaces. The adsorption kinetics is best described using a pseudo-second order model based on non-linear fit. The rate of adsorption increases with increasing bulk concentration of propylparaben. Adsorption equilibrium isotherm was fitted to three isotherm models: Langmuir, Freundlich, and Temkin, using non-linear fit. The Freundlich and Temkin models show the best fit, indicating a multi-layer adsorption. Using this case study, we present a methodology to provide mechanistic insights into the compatibility data between pharmaceutical ingredients and product contact materials when sorption is involved.

4.
Noncoding RNA ; 10(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38250801

ABSTRACT

The enteric nervous system (ENS) is an essential network of neurons and glia in the bowel wall. Defects in ENS development can result in Hirschsprung disease (HSCR), a life-threatening condition characterized by severe constipation, abdominal distention, bilious vomiting, and failure to thrive. A growing body of literature connects HSCR to alterations in miRNA expression, but there are limited data on the normal miRNA landscape in the developing ENS. We sequenced small RNAs (smRNA-seq) and messenger RNAs (mRNA-seq) from ENS precursor cells of mid-gestation Ednrb-EGFP mice and compared them to aggregated RNA from all other cells in the developing bowel. Our smRNA-seq results identified 73 miRNAs that were significantly enriched and highly expressed in the developing ENS, with miR-9, miR-27b, miR-124, miR-137, and miR-488 as our top 5 miRNAs that are conserved in humans. However, contrary to prior reports, our follow-up analyses of miR-137 showed that loss of Mir137 in Nestin-cre, Wnt1-cre, Sox10-cre, or Baf53b-cre lineage cells had no effect on mouse survival or ENS development. Our data provide important context for future studies of miRNAs in HSCR and other ENS diseases and highlight open questions about facility-specific factors in development.

7.
Soft Matter ; 18(15): 2936-2950, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35348172

ABSTRACT

Reactive blending of immiscible polymers is an important process for synthesizing polymer blends with superior properties. We use a phase-field model to understand reaction dynamics and morphology evolution by diffusive transport in layered films of incompatible, end-reactive polymers. We thoroughly investigate this phenomenon over a large parameter space of interface shapes, layer thicknesses, reaction rates specified by a Damkohler number (Daf), and Flory-Huggins interaction parameter (χ), under static conditions with no external fields. For films of the same thickness, the dynamics of the system is not significantly influenced by the length of the film or the initial shape of the interface. The interface between the polymers is observed to roughen, leading to the formation of a spontaneous emulsion. The reaction progresses slower and the interface roughens later for thicker films, and systems with higher χ. Increasing Daf increases the reaction rate and hastens the onset of roughening. The quasi-static interfacial tension decreases with the extent of reaction, but does not become vanishingly small or negative at the onset of roughening. Simulations with reversible reactions and systems where only a fraction of the homopolymers have reactive end groups show that a critical diblock (reaction product) concentration exists, below which interfacial roughening and spontaneous emulsification is not observed. We also demonstrate that thermal fluctuations accelerate the onset of interfacial roughening, and help sustain the system in an emulsified state.

10.
JCI Insight ; 6(10)2021 05 24.
Article in English | MEDLINE | ID: mdl-33848271

ABSTRACT

Retinoic acid (RA) signaling is essential for enteric nervous system (ENS) development, since vitamin A deficiency or mutations in RA signaling profoundly reduce bowel colonization by ENS precursors. These RA effects could occur because of RA activity within the ENS lineage or via RA activity in other cell types. To define cell-autonomous roles for retinoid signaling within the ENS lineage at distinct developmental time points, we activated a potent floxed dominant-negative RA receptor α (RarαDN) in the ENS using diverse CRE recombinase-expressing mouse lines. This strategy enabled us to block RA signaling at premigratory, migratory, and postmigratory stages for ENS precursors. We found that cell-autonomous loss of RA receptor (RAR) signaling dramatically affected ENS development. CRE activation of RarαDN expression at premigratory or migratory stages caused severe intestinal aganglionosis, but at later stages, RarαDN induced a broad range of phenotypes including hypoganglionosis, submucosal plexus loss, and abnormal neural differentiation. RNA sequencing highlighted distinct RA-regulated gene sets at different developmental stages. These studies show complicated context-dependent RA-mediated regulation of ENS development.


Subject(s)
Enteric Nervous System , Receptors, Retinoic Acid , Signal Transduction , Animals , Embryo, Mammalian/innervation , Embryo, Mammalian/metabolism , Embryonic Development/genetics , Embryonic Development/physiology , Enteric Nervous System/embryology , Enteric Nervous System/metabolism , Female , Male , Mice , Neurogenesis/genetics , Neurogenesis/physiology , Receptors, Retinoic Acid/genetics , Receptors, Retinoic Acid/metabolism , Signal Transduction/genetics , Signal Transduction/physiology
11.
Cancer Discov ; 11(2): 233-236, 2021 02.
Article in English | MEDLINE | ID: mdl-33355178

ABSTRACT

Published series on COVID-19 support the notion that patients with cancer are a particularly vulnerable population. There is a confluence of risk factors between cancer and COVID-19, and cancer care and treatments increase exposure to the virus and may dampen natural immune responses. The available evidence supports the conclusion that patients with cancer, in particular with hematologic malignancies, should be considered among the very high-risk groups for priority COVID-19 vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , Health Care Rationing/organization & administration , Hematologic Neoplasms/complications , Hematologic Neoplasms/epidemiology , Humans , Immunity , Immunization Programs/organization & administration , Odds Ratio , Proportional Hazards Models , Public Health/methods , Risk , Risk Factors , Treatment Outcome , Vaccination
13.
Cancer Prev Res (Phila) ; 13(11): 893-896, 2020 11.
Article in English | MEDLINE | ID: mdl-32943438

ABSTRACT

Screening for cancer is a proven and recommended approach to prevent deaths from cancer; screening can locate precursor lesions and/or cancer at early stages when it is potentially curable. Racial and ethnic minorities and other medically underserved populations exhibit lower uptake of cancer screening than nonminorities in the United States. The COVID-19 pandemic, which disproportionately affected minority communities, has curtailed preventive services including cancer screening to preserve personal protective equipment and prevent spread of infection. While there is evidence for a rebound from the pandemic-driven reduction in cancer screening nationally, the return may not be even across all populations, with minority population screening that was already behind becoming further behind as a result of the community ravages from COVID-19. Fear of contracting COVID-19, limited access to safety-net clinics, and personal factors like, financial, employment, and transportation issues are concerns that are intensified in medically underserved communities. Prolonged delays in cancer screening will increase cancer in the overall population from pre-COVID-19 trajectories, and elevate the cancer disparity in minority populations. Knowing the overall benefit of cancer screening versus the risk of acquiring COVID-19, utilizing at-home screening tests and keeping the COVID-19-induced delay in screening to a minimum might slow the growth of disparity.


Subject(s)
Coronavirus Infections , Early Detection of Cancer , Healthcare Disparities , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , Humans , SARS-CoV-2
15.
Gastroenterology ; 158(8): 2221-2235.e5, 2020 06.
Article in English | MEDLINE | ID: mdl-32113825

ABSTRACT

BACKGROUND & AIMS: Small, 2-dimensional sections routinely used for human pathology analysis provide limited information about bowel innervation. We developed a technique to image human enteric nervous system (ENS) and other intramural cells in 3 dimensions. METHODS: Using mouse and human colon tissues, we developed a method that combines tissue clearing, immunohistochemistry, confocal microscopy, and quantitative analysis of full-thickness bowel without sectioning to quantify ENS and other intramural cells in 3 dimensions. RESULTS: We provided 280 adult human colon confocal Z-stacks from persons without known bowel motility disorders. Most of our images were of myenteric ganglia, captured using a 20× objective lens. Full-thickness colon images, viewed with a 10× objective lens, were as large as 4 × 5 mm2. Colon from 2 pediatric patients with Hirschsprung disease was used to show distal colon without enteric ganglia, as well as a transition zone and proximal pull-through resection margin where ENS was present. After testing a panel of antibodies with our method, we identified 16 antibodies that bind to molecules in neurons, glia, interstitial cells of Cajal, and muscularis macrophages. Quantitative analyses demonstrated myenteric plexus in 24.5% ± 2.4% of flattened colon Z-stack area. Myenteric ganglia occupied 34% ± 4% of myenteric plexus. Single myenteric ganglion volume averaged 3,527,678 ± 573,832 mm3 with 38,706 ± 5763 neuron/mm3 and 129,321 ± 25,356 glia/mm3. Images of large areas provided insight into why published values of ENS density vary up to 150-fold-ENS density varies greatly, across millimeters, so analyses of small numbers of thin sections from the same bowel region can produce varying results. Neuron subtype analysis revealed that approximately 56% of myenteric neurons stained with neuronal nitric oxide synthase antibody and approximately 33% of neurons produce and store acetylcholine. Transition zone regions from colon tissues of patients with Hirschsprung disease had ganglia in multiple layers and thick nerve fiber bundles without neurons. Submucosal neuron distribution varied among imaged colon regions. CONCLUSIONS: We developed a 3-dimensional imaging method for colon that provides more information about ENS structure than tissue sectioning. This approach could improve diagnosis for human bowel motility disorders and may be useful for other bowel diseases as well.


Subject(s)
Colon/innervation , Ganglia, Autonomic/pathology , Hirschsprung Disease/pathology , Image Interpretation, Computer-Assisted , Imaging, Three-Dimensional , Microscopy, Confocal , Myenteric Plexus/pathology , Submucous Plexus/pathology , Animals , Automation , Cholinergic Neurons/pathology , Disease Models, Animal , Fluorescent Antibody Technique, Indirect , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nitrergic Neurons/pathology , Predictive Value of Tests , Tissue Fixation
16.
J Colloid Interface Sci ; 567: 18-27, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32035390

ABSTRACT

HYPOTHESIS: Electric fields enhance surfactant transport to oil-water interfaces when the surfactant forms charged aggregates in the oil phase. Hence, transport under electric fields could be used to detect charged surfactant aggregates in nonpolar media. EXPERIMENTS: Two surfactants with different architecture were dispersed in Isopar-M. The transport of surfactants to an oil-water interface under a constant electric field was quantified using a custom-built electrified microtensiometer platform. Electrical conductivity of the oil with surfactant concentration was also measured to determine the presence of charge carriers. FINDINGS: The charging mechanism of the oil phase, and field-enhanced transport was different for the two surfactants. At low concentrations where the electrical conductivity of the surfactants is indistinguishable, dynamic interfacial tension measurements under electric fields can ascertain the presence of charge carriers in Isopar-M. The transport of ionic surfactants in the aqueous phase was unaffected by the field, confirming that the field-enhanced transport of oil-phase surfactants is due to electrophoresis of charge carriers. Moreover, the equilibrium interfacial tension was not found to change under an electric field, suggesting the adsorption isotherm is independent of the field strength. We demonstrate that dynamic interfacial tension measurements under electric fields is a sensitive technique to detect charge carriers in nonpolar fluids.

17.
Phys Rev E ; 100(2-1): 023114, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31574733

ABSTRACT

The transport dynamics of oil-soluble surfactants to oil-water interfaces are quantified using a custom-built electrified capillary microtensiometer platform. Dynamic interfacial tension measurements reveal that surfactant transport is enhanced under a dc electric field, due to electro-migration of charge carriers in the oil toward the interface. Notably, this enhancement can be precisely tuned by altering the field strength and temporal scheduling. We demonstrate electric fields as a new parameter to manipulate surfactant transport to microscale fluid-fluid interfaces.

19.
Soft Matter ; 14(46): 9351-9360, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30457153

ABSTRACT

Electric fields can deform drops of fluid from their equilibrium shape, and induce breakup at sufficiently large field strengths. In this work, the electric field induced breakup of a squalane drop containing a colloidal suspension of carbon black particles with polyisobutylene succinimide (OLOA 11000) surfactant is studied. The drop is suspended in silicone oil. The breakup mode of a drop containing carbon black depends strongly on the suspension stability. It is observed that a drop of a stable suspension of carbon black has the same breakup mode as a drop with surfactant alone, i.e., without added carbon black. At lower electric fields, these drops break by the formation of lobes at the two ends of the drop; and at higher fields the homogeneous lobes break in a non-axisymmetric manner. However, a drop of an unstable suspension shows a drastically different breakup mode, and undergoes breakup much faster compared to a drop with surfactant alone. These drops elongate and form asymmetric lobes that develop into fingers and eventually disintegrate in an inhomogeneous, three-dimensional fashion. As a basis for comparison, the breakup of a pure squalane drop, and a squalane drop with equivalent surfactant concentrations but no carbon black particles is examined. Axisymmetric boundary integral computations are used to elucidate the mechanism of breakup. Our work demonstrates the impact of colloidal stability on the breakup of drops under an electric field. Colloidal stability on the time scale of drop deformation leads to rich and unexplored breakup phenomena.

SELECTION OF CITATIONS
SEARCH DETAIL
...