Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38798572

ABSTRACT

The Dishevelled (DVL) family of proteins form supramolecular protein and lipid complexes at the cytoplasmic interface of the plasma membrane to regulate tissue patterning, proliferation, cell polarity, and oncogenic processes through DVL-dependent signaling, such as Wnt/ß-catenin. While DVL binding to cholesterol is required for its membrane association, the specific structural requirements and cellular impacts of DVL-sterol association are unclear. We report that intracellular sterols which accumulate within normal and pathological conditions cause aberrant DVL activity. In silico and molecular analyses suggested orientation of the ß- and α-sterol face within the DVL-PDZ domain regulates DVL-sterol binding. Intracellular accumulation of naturally occurring sterols impaired DVL2 plasma membrane association, inducing DVL2 nuclear localization via Foxk2. Changes to intracellular sterols also selectively impaired DVL2 protein-protein interactions This work identifies sterol specificity as a regulator of DVL signaling, suggests intracellular sterols cause distinct impacts on DVL activity, and supports a role for intracellular sterol homeostasis in cell signaling.

2.
Dis Model Mech ; 15(12)2022 12 01.
Article in English | MEDLINE | ID: mdl-36524414

ABSTRACT

Owing to the need for de novo cholesterol synthesis and cholesterol-enriched structures within the nervous system, cholesterol homeostasis is critical to neurodevelopment. Diseases caused by genetic disruption of cholesterol biosynthesis, such as Smith-Lemli-Opitz syndrome, which is caused by mutations in 7-dehydrocholesterol reductase (DHCR7), frequently result in broad neurological deficits. Although astrocytes regulate multiple neural processes ranging from cell migration to network-level communication, immunological activation of astrocytes is a hallmark pathology in many diseases. However, the impact of DHCR7 on astrocyte function and immune activation remains unknown. We demonstrate that astrocytes from Dhcr7 mutant mice display hallmark signs of reactivity, including increased expression of glial fibrillary acidic protein (GFAP) and cellular hypertrophy. Transcript analyses demonstrate extensive Dhcr7 astrocyte immune activation, hyper-responsiveness to glutamate stimulation and altered calcium flux. We further determine that the impacts of Dhcr7 are not astrocyte intrinsic but result from non-cell-autonomous effects of microglia. Our data suggest that astrocyte-microglia crosstalk likely contributes to the neurological phenotypes observed in disorders of cholesterol biosynthesis. Additionally, these data further elucidate a role for cholesterol metabolism within the astrocyte-microglia immune axis, with possible implications in other neurological diseases.


Subject(s)
Smith-Lemli-Opitz Syndrome , Animals , Mice , Smith-Lemli-Opitz Syndrome/genetics , Smith-Lemli-Opitz Syndrome/metabolism , Smith-Lemli-Opitz Syndrome/pathology , Sterols , Microglia/pathology , Cholesterol , Phenotype
3.
Biology (Basel) ; 11(12)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36552337

ABSTRACT

Stress-inducible promoters are vital for the desirable expression of genes, especially transcription factors, which could otherwise compromise growth and development when constitutively overexpressed in plants. Here, we report on the characterization of the promoter region of a stress-responsive gene SaAsr1 from monocot halophyte cordgrass (Spartina alterniflora). Several cis-acting elements, such as ABRE (ABA-responsive element), DRE-CRT (dehydration responsive-element/C-Repeat), LTRE (low temperature-responsive element), ERE (ethylene-responsive element), LRE (light-responsive element), etc. contributed at varying degrees to salt-, drought- and ABA-enhanced expression of gusA reporter gene in Arabidopsis thaliana under the full-length promoter, pAsr11875 and its deletion derivatives with an assortment of cis-regulatory motifs. The smallest promoter, pAsr1491, with three cis-acting elements (a CCAAT box-heat responsive, an LRE, and a copper responsive element) conferred drought-enhanced expression of gusA; pAsr1755 (with an ABRE and a DRE) presented the highest expression in ABA and drought; and pAsr1994 with seven ABREs and two DREs conferred optimal induction of gusA, especially under drought and ABA. Arabidopsis transgenics expressing a known abiotic stress-responsive gene, SaADF2 (actin depolymerization factor 2), under both pAsr11875 and p35S promoters outperformed the wild type (WT) with enhanced drought and salt tolerance contributed by higher relative water content and membrane stability with no significant difference between pAsr11875:SaADF2 or p35S:SaADF2 lines. However, pAsr11875:SaADF2 lines produced healthy plants with robust shoot systems under salt stress and control compared to slightly stunted growth of the p35S:SaADF2 plants. This reestablished the evidence that transgene expression under a stress-inducible promoter is a better strategy for the genetic manipulation of crops.

4.
Cell Biol Int ; 46(4): 611-627, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35005799

ABSTRACT

Long noncoding RNAs (lncRNAs) are heterogeneous group of transcripts that lack coding potential and have essential roles in gene regulations. Recent days have seen an increasing association of noncoding RNAs with human diseases, especially cancers. One interesting group of noncoding RNAs strongly linked to cancers are heterochromatic repetitive Satellite RNAs. Satellite RNAs are transcribed from pericentromeric heterochromatic region of the human chromosomes. Satellite II RNA, most extensively studied, is upregulated in wide variety of epithelial cancer. Similarly, alpha satellite is over expressed in BRCA1-deficient tumors. Though much is known about alpha satellites and SatII repeats, little is known about Satellite III (SatIII) lncRNAs in human cancers. SatIII repeats, though transcriptionally silent in normal conditions is actively transcribed under condition of stress, mainly heat shock. In this study, we show that colon and breast cancer cells aberrantly transcribes SatIII, in a heat shock factor I (HSF1)-independent manner. Our study also reveals that, the overexpression of SatIII RNA favors cancer cell survival by overriding chemo drug-induced cell death. Interestingly, knockdown of SatIII sensitizes cells toward chemotherapeutic drugs. This sensitization is possibly mediated by restoration of p53 protein expression that facilitates cell death. Heat shock however helps SatIII to continue with its pro-cell survival function. Our results, therefore suggest SatIII to be an important regulator of human cancers. Induction of SatIII is not only a response to the oncogenic stress but also facilitates cancer progression by a distinct pathway that is different from heat stress pathway.


Subject(s)
Neoplasms , RNA, Long Noncoding , HeLa Cells , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , Heat-Shock Response/genetics , Humans , Neoplasms/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Untranslated
5.
Environ Sci Pollut Res Int ; 28(44): 61873-61907, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34553278

ABSTRACT

The removal of sulfur- and nitrogen-containing compounds present in petroleum fractions is necessary to meet the stringent environmental regulations and to prevent the environment and humanity from the threats they pose. Conventional hydro-desulfurization and hydro-denitrogenation processes have evolved significantly over the past decade but are limited due to severe operating conditions and inefficiency in removing nitrogen-containing compounds. On the contrary, unconventional non-hydrogen methods for refining of crude oils are beneficial in terms of mild operating conditions and are efficient for eradicating both sulfur- and nitrogen-containing compounds. Despite being efficient for both sulfur and nitrogen-containing compounds, these techniques suffer due to the hindrance posed by the competitive nature of nitrogen-containing compounds. Thus, it is recommended to develop techniques that can remove both the compounds simultaneously and efficiently. Techniques for simultaneous removal of those compounds can also be expected to reduce the number of unit operations required during refining and can be energy-efficient as well. This elaborative review summarizes the developments done in this field in the past two decades. To improve the understanding of the scientific community towards the feasibility of simultaneous desulfurization and denitrogenation processes, the crucial parameters for efficient desulfurization-denitrogenation processes are also discussed. This review can be expected to encourage the scientific community to search for more economical, energy-efficient, and commercializable pathways for desulfurization-denitrogenation of petroleum oil.


Subject(s)
Petroleum , Sulfur , Sulfur Compounds
6.
Plants (Basel) ; 9(7)2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32640740

ABSTRACT

Melatonin improves the tolerance of plants to various environmental stresses by protecting plant cells against oxidative stress damage. The objective of the current study was to determine whether exogenous melatonin (MT) treatments could help protecting peanut (Arachis hypogaea) seedlings against salinity stress. This was achieved by investigating enzymatic and non-enzymatic antioxidant systems and the expression of melatonin biosynthesis related genes in response to salinity stress with or without exogenous MT. The results showed a significant increase in the concentrations of reactive oxygen species (ROS) in peanut seedlings under salinity stress. The exogenous application of melatonin decreased the levels of ROS through the activation of antioxidant enzymes in peanut seedlings under salinity stress. Transcription levels of melatonin biosynthesis related genes such as N-acetylserotonin methyltransferase (ASMT1, ASMT2, ASMT3), tryptophan decarboxylase (TDC), and tryptamine 5-hydroxylase (T5H) were up-regulated with a 150 µM melatonin treatment under salinity stress. The results indicated that melatonin regulated the redox homeostasis by its ability to induce either enzymatic or non-enzymatic antioxidant systems. In addition, phylogenetic analysis of melatonin biosynthesis genes (ASMT1, ASMT2, ASMT3, TDC, T5H) were performed on a total of 56 sequences belonging to various plant species including five new sequences extracted from Arachis hypogaea (A. hypogaea). This was based on pairwise comparison among aligned nucleotides and predicted amino acids as well as on substitution rates, and phylogenetic inference. The analyzed sequences were heterogeneous and the A. hypogaea accessions were primarily closest to those of Manihot esculenta, but this needs further clarification.

7.
J Cell Biochem ; 120(9): 14700-14710, 2019 09.
Article in English | MEDLINE | ID: mdl-31090102

ABSTRACT

Oncogenesis involves continuous genetic alterations that lead to compromised cellular integrity and immortal cell fate. The cells remain under excessive stress due to endo- and exogenous influences. Human Satellite III long noncoding RNA (SatIII lncRNA) is a key regulator of the global cellular stress response, although its function is poorly explained in cancers. The principal regulator of cancer meshwork is tumor protein p53, which if altered may result in chemoresistance. The heat shock factor 1 (HSF1) being a common molecule between the oncogenic control and global cellular stress acts as an oncogene as well as transcribes SatIII upon heat shock. This prompted us to determine the structure of SatIII RNA and establish the association between SatIII-HSF1-p53. We determined the most stable structure of SatIII RNA with the least energy of - 115.7 kcal/mol. Also, we observed a possible interaction of p53 with SatIII and HSF1 using support vector machine (SVM) algorithm for predicting RNA-protein interaction (RPI). Further, we employ the STRING database to understand if p53 is an interacting component of the nuclear stress bodies (nSBs). A precise inference was drawn from molecular docking which confirmed the interaction of SatIII-HSF1-p53, where a mutated p53 resulted in an altered DNA-binding property with the SatIII molecule. This study being first of its kind infers p53 to be a possible integral component of the nSBs, which may regulate cellular stress response during cancer progression in the presence of HSF1 and SatIII. An extended research on the regulations of SatIII and p53 may open new avenues in the field of apoptosis in cancer and the early approach of molecular targeting.


Subject(s)
Carcinogenesis/pathology , Cell Nucleus/genetics , Heat Shock Transcription Factors/metabolism , RNA, Long Noncoding/metabolism , RNA, Satellite/metabolism , Stress, Physiological , Tumor Suppressor Protein p53/metabolism , Carcinogenesis/genetics , Carcinogenesis/metabolism , HeLa Cells , Heat Shock Transcription Factors/chemistry , Heat Shock Transcription Factors/genetics , Heat-Shock Response , Humans , Molecular Docking Simulation , Nucleic Acid Conformation , Protein Conformation , RNA, Long Noncoding/chemistry , RNA, Long Noncoding/genetics , RNA, Satellite/chemistry , RNA, Satellite/genetics , Transcription, Genetic , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics
8.
J Nanosci Nanotechnol ; 19(11): 7487-7492, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31039917

ABSTRACT

Synthesis of silver nanoparticles embedded on calcium alginate film and the catalytic property of this film in the reduction of nitrobenzene with sodium borohydride are demonstrated in this work. Natural polymer alginate acts as effective reducing and stabilizing agent in synthesis of silver nanoparticles. Effect of different parameters on the preparation of silver nanoparticles, such as, temperature, concentration of silver precursor and heating time was investigated. As-prepared silver nanoparticles were characterized by transmission electron microscopy, scanning electron microscopy, UV-Vis spectrometry, and atomic absorption spectrometry. Transmission electron microscopy analysis con-firms the formation of silver nanoparticles with particles size range of 3-19 nm and average particle size was found to be 10±4 nm. Effect of concentration of nitrobenzene and sodium borohydride, catalyst loading and temperature on the catalytic reduction of nitrobenzene was studied. Reusability of catalyst was examined in this reduction reaction and the catalyst shows good activity up to 10th run.

9.
Sci Rep ; 9(1): 5358, 2019 03 29.
Article in English | MEDLINE | ID: mdl-30926863

ABSTRACT

Halophytes are rich sources of salt stress tolerance genes which have often been utilized for introduction of salt-tolerance character in salt-sensitive plants. In the present study, we overexpressed PcINO1 and PcIMT1 gene(s), earlier characterized in this laboratory from wild halophytic rice Porteresia coarctata, into IR64 indica rice either singly or in combination and assessed their role in conferring salt-tolerance. Homozygous T3/T4 transgenic plants revealed that PcINO1 transformed transgenic rice lines exhibit significantly higher tolerance upto 200 mM or higher salt concentration with negligible compromise in their growth or other physiological parameters compared to the untransformed system grown without stress. The PcIMT1-lines or the double transgenic lines (DC1) having PcINO1 and PcIMT1 introgressed together, were less efficient in such respect. Comparison of inositol and/or pinitol pool in three types of transgenic plants suggests that plants whose inositol production remains uninterrupted under stress by the functional PcINO1 protein, showed normal growth as in the wild-type plants without stress. It is conceivable that inositol itself acts as a stress-ameliorator and/or as a switch for a number of other pathways important for imparting salt-tolerance. Such selective manipulation of the inositol metabolic pathway may be one of the ways to combat salt stress in plants.


Subject(s)
Inositol/metabolism , Metabolic Engineering , Metabolic Networks and Pathways , Oryza/genetics , Oryza/metabolism , Salt Tolerance/genetics , Gene Expression Profiling , Genetic Vectors , Photosynthesis , Plant Development/genetics , Plant Proteins/genetics , Plants, Genetically Modified , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/metabolism
10.
J Biosci ; 44(1)2019 Mar.
Article in English | MEDLINE | ID: mdl-30837373

ABSTRACT

Cancer is a physiological condition that has both the endogenous and exogenous influences on its progression. It originates from unusual cell growth, where the cells undergo massive genetic alterations, bypass the signaling machinery and compromise its genetic cohesion. Literature has well narrated the DNA damage studies including driver mutations that interfere with the treatment strategies. However, with evolving medical excellence, recent day studies are trying to unveil the contribution of RNAs in the progression of tumor malignancies. A number of non-coding RNAs have been identified as an active component in cancer genomics. This article aims to review the role of long non-coding RNAs in the spectra of cancers and its prognostic value as the biomarkers in molecular targeting with clinical utility and therapeutic beneficence.


Subject(s)
Biomarkers, Tumor/genetics , Carcinogenesis/genetics , Neoplasms/genetics , RNA, Long Noncoding/genetics , DNA Damage/genetics , Gene Expression Regulation, Neoplastic , Humans , Mutation , Neoplasms/pathology , Signal Transduction/genetics
11.
Plant Biotechnol J ; 17(1): 188-205, 2019 01.
Article in English | MEDLINE | ID: mdl-29851294

ABSTRACT

Actin-depolymerizing factors (ADFs) maintain the cellular actin network dynamics by regulating severing and disassembly of actin filaments in response to environmental cues. An ADF isolated from a monocot halophyte, Spartina alterniflora (SaADF2), imparted significantly higher level of drought and salinity tolerance when expressed in rice than its rice homologue OsADF2. SaADF2 differs from OsADF2 by a few amino acid residues, including a substitution in the regulatory phosphorylation site serine-6, which accounted for its weak interaction with OsCDPK6 (calcium-dependent protein kinase), thus resulting in an increased efficacy of SaADF2 and enhanced cellular actin dynamics. SaADF2 overexpression preserved the actin filament organization better in rice protoplasts under desiccation stress. The predicted tertiary structure of SaADF2 showed a longer F-loop than OsADF2 that could have contributed to higher actin-binding affinity and rapid F-actin depolymerization in vitro by SaADF2. Rice transgenics constitutively overexpressing SaADF2 (SaADF2-OE) showed better growth, relative water content, and photosynthetic and agronomic yield under drought conditions than wild-type (WT) and OsADF2 overexpressers (OsADF2-OE). SaADF2-OE preserved intact grana structure after prolonged drought stress, whereas WT and OsADF2-OE presented highly damaged and disorganized grana stacking. The possible role of ADF2 in transactivation was hypothesized from the comparative transcriptome analyses, which showed significant differential expression of stress-related genes including interacting partners of ADF2 in overexpressers. Identification of a complex, differential interactome decorating or regulating stress-modulated cytoskeleton driven by ADF isoforms will lead us to key pathways that could be potential target for genome engineering to improve abiotic stress tolerance in agricultural crops.


Subject(s)
Genes, Plant/genetics , Oryza/genetics , Plant Proteins/genetics , Poaceae/genetics , Salt-Tolerant Plants/genetics , Actins/metabolism , Dehydration , Gene Expression Regulation, Plant , Genes, Plant/physiology , Hydrogen-Ion Concentration , Oryza/metabolism , Oryza/physiology , Phylogeny , Plant Proteins/physiology , Plant Stomata/physiology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/physiology , Poaceae/metabolism , Poaceae/physiology , Salt-Tolerant Plants/metabolism , Salt-Tolerant Plants/physiology , Sequence Alignment , Sequence Analysis, DNA
12.
Planta ; 249(3): 891-912, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30465114

ABSTRACT

MAIN CONCLUSION: Expression of the Galactinol synthase genes in rice is regulated through post-transcriptional intron retention in response to abiotic stress and may be linked to Raffinose Family Oligosaccharide synthesis in osmotic perturbation. Galactinol synthase (GolS) is the first committed enzyme in raffinose family oligosaccharide (RFO) synthesis pathway and synthesizes galactinol from UDP-galactose and inositol. Expression of GolS genes has long been implicated in abiotic stress, especially drought and salinity. A non-canonical regulation mechanism controlling the splicing and maturation of rice GolS genes was identified in rice photosynthetic tissue. We found that the two isoforms of Oryza sativa GolS (OsGolS) gene, located in chromosomes 3(OsGolS1) and 7(OsGolS2) are interspersed by conserved introns harboring characteristic premature termination codons (PTC). During abiotic stress, the premature and mature transcripts of both isoforms were found to accumulate in a rhythmic manner for very small time-windows interrupted by phases of complete absence. Reporter gene assay using GolS promoters under abiotic stress does not reflect this accumulation profile, suggesting that this regulation occurs post-transcriptionally. We suggest that this may be due to a surveillance mechanism triggering the degradation of the premature transcript preventing its accumulation in the cell. The suggested mechanism fits the paradigm of PTC-induced Nonsense-Mediated Decay (NMD). In support of our hypothesis, when we pharmacologically blocked NMD, the full-length pre-mRNAs were increasingly accumulated in cell. To this end, our work suggests that a combined transcriptional and post transcriptional control exists in rice to regulate GolS expression under stress. Concurrent detection and processing of prematurely terminating transcripts coupled to repressed splicing can be described as a form of Regulated Unproductive Splicing and Translation (RUST) and may be linked to the stress adaptation of the plant, which is an interesting future research possibility.


Subject(s)
Galactosyltransferases/metabolism , Genes, Plant/physiology , Oryza/genetics , Arabidopsis , Galactosyltransferases/genetics , Galactosyltransferases/physiology , Gene Expression Regulation, Plant , Genes, Plant/genetics , Introns/genetics , Introns/physiology , Oryza/enzymology , Oryza/physiology , Plants, Genetically Modified , RNA Processing, Post-Transcriptional/genetics , RNA Processing, Post-Transcriptional/physiology , Real-Time Polymerase Chain Reaction , Sequence Alignment , Stress, Physiological
13.
Planta ; 248(5): 1121-1141, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30066217

ABSTRACT

MAIN CONCLUSION: The promoter deletion mutants from second isoform of INO1 (gene-encoding MIPS) from Porteresia coarctata of 932 bp (pPcINO1.2.932) and 793 bp (pPcINO1.2.793) prove to be very efficient as salt/drought stress-inducible promoters, while pPcINO1.2.932 is found to be responsive to cold stress as well. The promoters of the two identified myo-inositol-1-phosphate synthase (INO1) isoforms from salt-tolerant wild rice, Porteresia coarctata (PcINO1.1 and PcINO1.2) have been compared bioinformatically with their counterparts present in the salt-sensitive rice, Oryza sativa. PcINO1.2 promoter was found to be enriched with many abiotic stress-responsive elements, like abscisic acid-responsive elements, MYC-responsive elements, MYB-binding sites, low-temperature stress-responsive elements, and heat-shock elements similar to the ones found in the conserved motifs of the promoters of salt/drought stress-inducible INO1 promoters across Kingdom Planta. To have detailed analysis on the arrangement of cis-acting regulatory elements present in PcINO1 promoters, 5' deletion mutational studies were performed in dicot model plants. Both transient as well as stable transformation methods were used to check the influence of PcINO1 promoter deletion mutants under salt and physiologically drought conditions using ß-glucuronidase as the reporter gene. The deletion mutant from the promoter of PcINO1.2 of length 932 bp (pPcINO1.2.932) was found to be significantly upregulated under drought stress and also in cold stress, while another deletion mutant, pPcINO1.2.793 (of 793 bp), was significantly upregulated under salt stress. P. coarctata being a halophytic species, the high inducibility of pPcINO1.2.932 upon exposure to low-temperature stress was an unexpected result.


Subject(s)
Myo-Inositol-1-Phosphate Synthase/genetics , Plant Proteins/genetics , Poaceae/genetics , Promoter Regions, Genetic/genetics , Salt-Tolerant Plants/genetics , Arabidopsis/genetics , Oryza/enzymology , Oryza/genetics , Phylogeny , Plants, Genetically Modified , Poaceae/enzymology , Salt Tolerance/genetics , Salt-Tolerant Plants/enzymology , Nicotiana/genetics
14.
Biochem Biophys Res Commun ; 503(3): 1516-1523, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30031604

ABSTRACT

Actin depolymerizing factors (ADFs) are ubiquitous actin-binding proteins that play essential roles in maintaining cellular actin dynamics by depolymerizing/severing F-actin. Plant ADF isoforms show functional divergence via differential biochemical and cellular properties. We have shown previously that ADF2 of rice (OsADF2) and smooth cordgrass (SaADF2) displayed contrasting biochemical properties and stress response in planta. As a proof-of-concept that amino acid variances contribute to such functional difference, single amino acid mutants of OsADF2 were generated based on its sequence differences with SaADF2. Biochemical studies showed that the single-site amino acid mutations altered actin binding, depolymerizing, and severing properties of OsADF2. Phosphosensitive mutations, such as serine-6>threonine, changed the regulatory phosphorylation efficiency of ADF2 variants. The N-terminal mutations had greater effect on the phosphorylation pattern of OsADF2, whereas C-terminal mutations affected actin binding and severing. The presence of introduced mutations in isovariants of monocot ADF suggests that these residues are significant control points regulating their functional divergence, including abiotic stress response.


Subject(s)
Actin Depolymerizing Factors/metabolism , Oryza/metabolism , Actin Depolymerizing Factors/genetics , Actin Depolymerizing Factors/isolation & purification , Binding Sites , Mutation , Oryza/genetics , Oryza/growth & development , Phosphorylation , Protein Isoforms/genetics , Protein Isoforms/isolation & purification , Protein Isoforms/metabolism , Sequence Analysis, Protein , Structure-Activity Relationship
15.
J Genet ; 96(1): 203-210, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28360406

ABSTRACT

The importance of noncoding genome has become more evident in recent years. Before genome sequencing, the most well studied portion of our genome was protein coding genes. Interestingly, this coding portion accounted only for 1.5% of the genome, the rest being the noncoding sequences. Noncoding RNAs (ncRNAs) are involved in normal cell physiology, stress, and disease states. A class of small ncRNAs and miRNAs has gained much importance because of its involvement in human diseases such as cancer. Involvement of long ncRNAs have also been acknowledged in other human diseases, especially in neurodegenerative diseases. Neurodegenerative diseases are characterized by the presence of abnormally folded proteins that are toxic to the cell. Several studies from model organisms suggest upregulation of pathways that clear this toxic protein may provide protection against neurodegeneration. In this review, I summarize the importance of ncRNAs in protein quality control system of cell that is implicated in this fatal group of neurodegenerative diseases.


Subject(s)
Gene Expression Regulation , Nerve Tissue Proteins/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Protein Processing, Post-Translational , RNA, Untranslated/genetics , Animals , Autophagy/genetics , Endoplasmic Reticulum/metabolism , Humans , MicroRNAs/genetics , Peptides/genetics , Trinucleotide Repeat Expansion , Ubiquitination
16.
J Cell Sci ; 129(19): 3541-3552, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27528402

ABSTRACT

The heat shock response is a conserved defense mechanism that protects cells from physiological stress, including thermal stress. Besides the activation of heat-shock-protein genes, the heat shock response is also known to bring about global suppression of transcription; however, the mechanism by which this occurs is poorly understood. One of the intriguing aspects of the heat shock response in human cells is the transcription of satellite-III (Sat3) long non-coding RNAs and their association with nuclear stress bodies (nSBs) of unknown function. Besides association with the Sat3 transcript, the nSBs are also known to recruit the transcription factors HSF1 and CREBBP, and several RNA-binding proteins, including the splicing factor SRSF1. We demonstrate here that the recruitment of CREBBP and SRSF1 to nSBs is Sat3-dependent, and that loss of Sat3 transcripts relieves the heat-shock-induced transcriptional repression of a few target genes. Conversely, forced expression of Sat3 transcripts results in the formation of nSBs and transcriptional repression even without a heat shock. Our results thus provide a novel insight into the regulatory role for the Sat3 transcripts in heat-shock-dependent transcriptional repression.


Subject(s)
Heat-Shock Response/genetics , RNA, Untranslated/metabolism , Transcription, Genetic , CREB-Binding Protein/metabolism , Cell Death , Cell Nucleus/metabolism , Gene Knockdown Techniques , HeLa Cells , Humans , Models, Biological , Protein Binding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , RNA, Untranslated/genetics , Serine-Arginine Splicing Factors/metabolism , Stress, Physiological
17.
Front Plant Sci ; 6: 656, 2015.
Article in English | MEDLINE | ID: mdl-26379684

ABSTRACT

Abiotic stress induces differential expression of genes responsible for the synthesis of raffinose family of oligosaccharides (RFOs) in plants. RFOs are described as the most widespread D-galactose containing oligosaccharides in higher plants. Biosynthesis of RFOs begin with the activity of galactinol synthase (GolS; EC 2.4.1.123), a GT8 family glycosyltransferase that galactosylates myo-inositol to produce galactinol. Raffinose and the subsequent higher molecular weight RFOs (Stachyose, Verbascose, and Ajugose) are synthesized from sucrose by the subsequent addition of activated galactose moieties donated by Galactinol. Interestingly, GolS, the key enzyme of this pathway is functional only in the flowering plants. It is thus assumed that RFO synthesis is a specialized metabolic event in higher plants; although it is not known whether lower plant groups synthesize any galactinol or RFOs. In higher plants, several functional importance of RFOs have been reported, e.g., RFOs protect the embryo from maturation associated desiccation, are predominant transport carbohydrates in some plant families, act as signaling molecule following pathogen attack and wounding and accumulate in vegetative tissues in response to a range of abiotic stresses. However, the loss-of-function mutants reported so far fail to show any perturbation in those biological functions. The role of RFOs in biotic and abiotic stress is therefore still in debate and their specificity and related components remains to be demonstrated. The present review discusses the biology and stress-linked regulation of this less studied extension of inositol metabolic pathway.

18.
Front Plant Sci ; 5: 224, 2014.
Article in English | MEDLINE | ID: mdl-24904619

ABSTRACT

Some areas in plant abiotic stress research are not frequently addressed by genomic and molecular tools. One such area is the cross reaction of gravitational force with upward capillary pull of water and the mechanical-functional trade-off in plant vasculature. Although frost, drought and flooding stress greatly impact these physiological processes and consequently plant performance, the genomic and molecular basis of such trade-off is only sporadically addressed and so is its adaptive value. Embolism resistance is an important multiple stress- opposition trait and do offer scopes for critical insight to unravel and modify the input of living cells in the process and their biotechnological intervention may be of great importance. Vascular plants employ different physiological strategies to cope with embolism and variation is observed across the kingdom. The genomic resources in this area have started to emerge and open up possibilities of synthesis, validation and utilization of the new knowledge-base. This review article assesses the research till date on this issue and discusses new possibilities for bridging physiology and genomics of a plant, and foresees its implementation in crop science.

19.
Indian J Med Res ; 138(3): 329-39, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24135177

ABSTRACT

BACKGROUND & OBJECTIVES: Non-detection of hepatitis B virus (HBV) envelope protein (hepatitis B surface antigen, HBsAg) in a chronically HBV infected individual has been described as occult infection. One possible reason for this phenotype is alteration in large (L-HBsAg) to small (S-HBsAg) envelope protein ratio associated with reduced or non secretion of HBsAg. This results in quantitative levels of serum HBsAg below the detection limit of enzyme immunoassays. Genotype D of HBV has a characteristic 33 nucleotide (nt) deletion upstream of the pre-S2/S promoter. This deletion may reduce HBsAg secretion in occult infection patients infected with genotype D HBV. Additional deletions in the pre-S2/S promoter may further aggravate reduced HBsAg secretion in patients infected with genotype D HBV. Thus, the aim of the present study was to determine the role of genotype D specific 33nt deletion and additional pre-S2/S promoter deletions in causing reduced or no secretion of HBsAg, in occult infection. Since these deletions overlap virus polymerase, their effect on virus replication was also investigated. METHODS: We examined the in vitro expression of HBsAg, ratio of cure and 'e' antigen (HBcAg/HBeAg), their secretion and virus replication, using overlength 1.3 mer/1.86 mer genotype A replicons, and genotype D replicons with and without additional pre-S2/S promoter deletions from cases of occult infection. RESULTS: Genotype D replicon showed a decrease in HBsAg secretion compared to the wild-type genotype A. Genotype D replicons carrying additional pre-S2/S promoter deletions, showed further reduction in HBsAg secretion, demonstrated presence of intracellular HBcAg/HBeAg, virus replication intermediates and 'e' antigen secretion. INTERPRETATION & CONCLUSIONS: The characteristic 33 nt deletion of genotype D HBV reduces HBsAg secretion. Additional pre-S2/S promoter deletions may further diminish HBsAg secretion, leading to occult infection. Pre-S2/S promoter deletions do not affect HBV replication.


Subject(s)
Genotype , Hepatitis B virus/genetics , Hepatitis B/virology , Mutation , Enzyme-Linked Immunosorbent Assay , Hepatitis B Surface Antigens/blood , Hepatitis B virus/immunology , Humans
20.
ScientificWorldJournal ; 2013: 403191, 2013.
Article in English | MEDLINE | ID: mdl-24489501

ABSTRACT

The rDNA-ITS (Ribosomal DNA Internal Transcribed Spacers) fragment of the genomic DNA of 8 wild edible mushrooms (collected from Eastern Chota Nagpur Plateau of West Bengal, India) was amplified using ITS1 (Internal Transcribed Spacers 1) and ITS2 primers and subjected to nucleotide sequence determination for identification of mushrooms as mentioned. The sequences were aligned using ClustalW software program. The aligned sequences revealed identity (homology percentage from GenBank data base) of Amanita hemibapha [CN (Chota Nagpur) 1, % identity 99 (JX844716.1)], Amanita sp. [CN 2, % identity 98 (JX844763.1)], Astraeus hygrometricus [CN 3, % identity 87 (FJ536664.1)], Termitomyces sp. [CN 4, % identity 90 (JF746992.1)], Termitomyces sp. [CN 5, % identity 99 (GU001667.1)], T. microcarpus [CN 6, % identity 82 (EF421077.1)], Termitomyces sp. [CN 7, % identity 76 (JF746993.1)], and Volvariella volvacea [CN 8, % identity 100 (JN086680.1)]. Although out of 8 mushrooms 4 could be identified up to species level, the nucleotide sequences of the rest may be relevant to further characterization. A phylogenetic tree is constructed using Neighbor-Joining method showing interrelationship between/among the mushrooms. The determined nucleotide sequences of the mushrooms may provide additional information enriching GenBank database aiding to molecular taxonomy and facilitating its domestication and characterization for human benefits.


Subject(s)
Agaricales/classification , Agaricales/genetics , Base Sequence , Computational Biology , DNA, Fungal , Molecular Sequence Data , Phenotype , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...