Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 124(15): 156803, 2020 Apr 17.
Article in English | MEDLINE | ID: mdl-32357030

ABSTRACT

Quantum fluctuations are imprinted with valuable information about transport processes. Experimental access to this information is possible, but challenging. We introduce the dynamical Coulomb blockade (DCB) as a local probe for fluctuations in a scanning tunneling microscope (STM) and show that it provides information about the conduction channels. In agreement with theoretical predictions, we find that the DCB disappears in a single-channel junction with increasing transmission following the Fano factor, analogous to what happens with shot noise. Furthermore we demonstrate local differences in the DCB expected from changes in the conduction channel configuration. Our experimental results are complemented by ab initio transport calculations that elucidate the microscopic nature of the conduction channels in our atomic-scale contacts. We conclude that probing the DCB by STM provides a technique complementary to shot noise measurements for locally resolving quantum transport characteristics.

2.
Phys Rev Lett ; 121(22): 226402, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30547609

ABSTRACT

Scanning tunneling spectroscopy measurements of Mn phthalocyanine (MnPc) molecules adsorbed on (sqrt[3]×sqrt[3]) surface alloys show single inelastic steps at exclusively positive or negative bias strongly depending on the tip position. This is in contrast to conventional molecular excitation thresholds, which are independent of the current direction and therefore always occur at both positive and negative bias. This polarity selectivity is found to coincide with the spatial distribution of occupied and empty orbitals. Because of the interaction with the substrate, charge transfer into the doubly degenerate d_{π} orbitals of MnPc takes place. The resulting Jahn-Teller effect lifts the degeneracy and leads to an isospin- or pseudospin-flip excitation, the inelastic analogue of an orbital Kondo resonance.

3.
Phys Rev Lett ; 119(14): 147702, 2017 Oct 06.
Article in English | MEDLINE | ID: mdl-29053289

ABSTRACT

We have investigated the phase dynamics of a superconducting tunnel junction at ultralow temperatures in the presence of high damping, where the interaction with environmental degrees of freedom represents the leading energy scale. In this regime, theory predicts the dynamics to follow a generalization of the classical Smoluchowski description, the quantum Smoluchowski equation, thus, exhibiting overdamped quantum Brownian motion characteristics. For this purpose, we have performed current-biased measurements on the small-capacitance Josephson junction of a scanning tunneling microscope placed in a low impedance environment at milli-Kelvin temperatures. We can describe our experimental findings with high accuracy by using a quantum phase diffusion model based on the quantum Smoluchowski equation. In this way we experimentally demonstrate that overdamped quantum systems follow quasiclassical dynamics with significant quantum effects as the leading corrections.

4.
Nat Commun ; 7: 13009, 2016 10 06.
Article in English | MEDLINE | ID: mdl-27708282

ABSTRACT

The tunnelling current in scanning tunnelling spectroscopy (STS) is typically and often implicitly modelled by a continuous and homogeneous charge flow. If the charging energy of a single-charge quantum sufficiently exceeds the thermal energy, however, the granularity of the current becomes non-negligible. In this quantum limit, the capacitance of the tunnel junction mediates an interaction of the tunnelling electrons with the surrounding electromagnetic environment and becomes a source of noise itself, which cannot be neglected in STS. Using a scanning tunnelling microscope operating at 15 mK, we show that we operate in this quantum limit, which determines the ultimate energy resolution in STS. The P(E)-theory describes the probability for a tunnelling electron to exchange energy with the environment and can be regarded as the energy resolution function. We experimentally demonstrate this effect with a superconducting aluminium tip and a superconducting aluminium sample, where it is most pronounced.

5.
Nano Lett ; 14(7): 3895-902, 2014 Jul 09.
Article in English | MEDLINE | ID: mdl-24871813

ABSTRACT

Magnetic organic molecules, such as 3d transition metal phthalocyanines (TMPc), exhibit properties which make them promising candidates for future applications in magnetic data storage or spin-based data processing. Due to their small size, however, TMPc molecules are prone to quantum effects. For example, the interaction of uncompensated molecular spins with conduction electrons of the substrate may lead to the formation of a many-body singlet state, which gives rise to the so-called Kondo effect. Although the Kondo effect of TMPc molecules has been the object of several investigations, a consistent picture to describe under which conditions a Kondo state is formed is still missing. Here, we study the Kondo properties of MnPc on Ag(001) by means of the low-temperature scanning tunneling spectroscopy (LT-STS) measurements. Differential conductance dI/dU spectra reveal a zero-bias peak that is localized on the Mn ion site. Ab initio calculations combined with a many-body treatment of the multiorbital interaction show that the local Hund coupling favors the high-spin configuration on the 3d shell of the central TM atom. Therefore, each orbital gets close to its individual half-filling creating the necessary condition for many of the 3d orbitals to contribute to the observed Kondo resonance. This, however, happens only for the 3dz(2) orbital, whose hybridization to the substrate is much stronger than for the other orbitals thanks to its shape and its orientation.

SELECTION OF CITATIONS
SEARCH DETAIL
...