Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
IBRO Neurosci Rep ; 13: 344-355, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36274789

ABSTRACT

Introduction: slowly adapting mechanoreceptors in the skin provide vital tactile information to animals. The ionic channels that underlie their functioning is the subject of intense research. Previous work suggests that potassium channels may play particular roles in the activation and firing of these mechanoreceptors. Objective: We used a range of potassium channel blockers and openers to observe their effects on different phases of mechanoreceptor responses. Methods: Extracellular recording of neural activity of slowly adapting mechanoreceptors was carried out in an in vitro preparation of the sinus hair follicles taken from rat whisker pads. A range of potassium (K+) channel modulators were tested on these mechanoreceptor responses. The channel blockers tested were: tetraethylammonium (TEA), barium chloride (BaCl2), dequalinium, 4-aminopyridine (4-AP), paxilline, XE 991, apamin, and charybdotoxin. Results: Except for charybdotoxin and apamin, these drugs increased the activity of both types of slowly adapting units, St I and St II. Generally, both spontaneous and evoked (dynamic and static) activities increased. The channel opener NS1619 was also tested. NS1619 clearly decreased evoked activity (both dynamic and static) while leaving spontaneous activity relatively unaffected, with no clear discrimination of effects on the two types of St receptor. Conclusion: These findings are consistent with the targets of the drugs suggesting that K+ channels play an important role in the maintenance of spontaneous firing and in the production of and persistence of mechanoreceptor activity.

2.
Skin Pharmacol Physiol ; 33(5): 253-260, 2020.
Article in English | MEDLINE | ID: mdl-33053558

ABSTRACT

BACKGROUND: The pharmacological study of mechanoreceptors embedded within tissue is hampered by tissue barriers to applied research drugs. METHODS: Hyaluronidase increases the permeability of tissues and is used clinically to facilitate the distribution of injected drugs. An in vitro rat sinus hair preparation was used to determine whether hyaluronidase (1,500 or 3,000 IU/10 mL) had an effect on drug access to receptor sites on slowly adapting St I and St II mechanoreceptors. Electrical recordings were made from single mechanoreceptor units that were activated by trapezoid ramp stimuli. Cinnamaldehyde (500-1,500 µM) and capsazepine (100 µM) were used as test drugs. Changes in onset time and degree of depression of firing due to test drugs were compared to control experiments not employing hyaluronidase. RESULTS: There were no statistical effects on any of the observed measures. Often the effects were opposite to those predicted. Using a likelihood approach, it was calculated that there was strong evidence (log-likelihood ratios from -0.5 to -6.5) to support a null effect over a facilitatory effect. There was no evidence of loss of integrity of mechanoreceptor mechanotransduction mechanisms following hyaluronidase applications. Comparison with Existing Method: The use of hyaluronidase does not facilitate drug access to receptors. CONCLUSIONS: In the in vitro sinus hair preparation, the addition of hyaluronidase does not allow easier access to slowly adapting mechanoreceptors within the follicle.


Subject(s)
Hyaluronoglucosaminidase/metabolism , Mechanoreceptors/drug effects , Mechanoreceptors/metabolism , Skin Absorption/drug effects , Skin/drug effects , Skin/metabolism , Acrolein/administration & dosage , Acrolein/analogs & derivatives , Acrolein/metabolism , Animals , Female , Hyaluronoglucosaminidase/administration & dosage , Male , Mechanotransduction, Cellular/drug effects , Mechanotransduction, Cellular/physiology , Organ Culture Techniques , Rats , Rats, Sprague-Dawley , Skin Absorption/physiology
3.
Korean J Physiol Pharmacol ; 21(5): 555-563, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28883759

ABSTRACT

Electrical stimulation through retinal prosthesis elicits both short and long-latency retinal ganglion cell (RGC) spikes. Because the short-latency RGC spike is usually obscured by electrical stimulus artifact, it is very important to isolate spike from stimulus artifact. Previously, we showed that topographic prominence (TP) discriminator based algorithm is valid and useful for artifact subtraction. In this study, we compared the performance of forward backward (FB) filter only vs. TP-adopted FB filter for artifact subtraction. From the extracted retinae of rd1 mice, we recorded RGC spikes with 8×8 multielectrode array (MEA). The recorded signals were classified into four groups by distances between the stimulation and recording electrodes on MEA (200-400, 400-600, 600-800, 800-1000 µm). Fifty cathodic phase-1st biphasic current pulses (duration 500 µs, intensity 5, 10, 20, 30, 40, 50, 60 µA) were applied at every 1 sec. We compared false positive error and false negative error in FB filter and TP-adopted FB filter. By implementing TP-adopted FB filter, short-latency spike can be detected better regarding sensitivity and specificity for detecting spikes regardless of the strength of stimulus and the distance between stimulus and recording electrodes.

4.
J Neural Eng ; 14(1): 016017, 2017 02.
Article in English | MEDLINE | ID: mdl-28045002

ABSTRACT

OBJECTIVE: Direct stimulation of retinal ganglion cells in degenerate retinas by implanting epi-retinal prostheses is a recognized strategy for restoration of visual perception in patients with retinitis pigmentosa or age-related macular degeneration. Elucidating the best stimulus-response paradigms in the laboratory using multielectrode arrays (MEA) is complicated by the fact that the short-latency spikes (within 10 ms) elicited by direct retinal ganglion cell (RGC) stimulation are obscured by the stimulus artifact which is generated by the electrical stimulator. APPROACH: We developed an artifact subtraction algorithm based on topographic prominence discrimination, wherein the duration of prominences within the stimulus artifact is used as a strategy for identifying the artifact for subtraction and clarifying the obfuscated spikes which are then quantified using standard thresholding. MAIN RESULTS: We found that the prominence discrimination based filters perform creditably in simulation conditions by successfully isolating randomly inserted spikes in the presence of simple and even complex residual artifacts. We also show that the algorithm successfully isolated short-latency spikes in an MEA-based recording from degenerate mouse retinas, where the amplitude and frequency characteristics of the stimulus artifact vary according to the distance of the recording electrode from the stimulating electrode. By ROC analysis of false positive and false negative first spike detection rates in a dataset of one hundred and eight RGCs from four retinal patches, we found that the performance of our algorithm is comparable to that of a generally-used artifact subtraction filter algorithm which uses a strategy of local polynomial approximation (SALPA). SIGNIFICANCE: We conclude that the application of topographic prominence discrimination is a valid and useful method for subtraction of stimulation artifacts with variable amplitudes and shapes. We propose that our algorithm may be used as stand-alone or supplementary to other artifact subtraction algorithms like SALPA.


Subject(s)
Action Potentials/physiology , Algorithms , Artifacts , Electric Stimulation/methods , Pattern Recognition, Automated/methods , Reaction Time/physiology , Retinal Ganglion Cells/physiology , Animals , Discriminant Analysis , Mice , Mice, Inbred C3H , Reproducibility of Results , Sensitivity and Specificity , Spatio-Temporal Analysis
5.
Korean J Physiol Pharmacol ; 19(2): 167-75, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25729279

ABSTRACT

A retinal prosthesis is being developed for the restoration of vision in patients with retinitis pigmentosa (RP) and age-related macular degeneration (AMD). Determining optimal electrical stimulation parameters for the prosthesis is one of the most important elements for the development of a viable retinal prosthesis. Here, we investigated the effects of different charge-balanced biphasic pulses with regard to their effectiveness in evoking retinal ganglion cell (RGC) responses. Retinal degeneration (rd1) mice were used (n=17). From the ex-vivo retinal preparation, retinal patches were placed ganglion cell layer down onto an 8×8 multielectrode array (MEA) and RGC responses were recorded while applying electrical stimuli. For asymmetric pulses, 1st phase of the pulse is the same with symmetric pulse but the amplitude of 2nd phase of the pulse is less than 10 µA and charge balanced condition is satisfied by lengthening the duration of the pulse. For intensities (or duration) modulation, duration (or amplitude) of the pulse was fixed to 500 µs (30 µA), changing the intensities (or duration) from 2 to 60 µA (60 to 1000 µs). RGCs were classified as response-positive when PSTH showed multiple (3~4) peaks within 400 ms post stimulus and the number of spikes was at least 30% more than that for the immediate pre-stimulus 400 ms period. RGC responses were well modulated both with anodic and cathodic phase-1st biphasic pulses. Cathodic phase-1st pulses produced significantly better modulation of RGC activity than anodic phase-1st pulses regardless of symmetry of the pulse.

6.
Front Cell Neurosci ; 9: 512, 2015.
Article in English | MEDLINE | ID: mdl-26793063

ABSTRACT

Characterization of the electrical activity of the retina in the animal models of retinal degeneration has been carried out in part to understand the progression of retinal degenerative diseases like age-related macular degeneration (AMD) and retinitis pigmentosa (RP), but also to determine optimum stimulus paradigms for use with retinal prosthetic devices. The models most studied in this regard have been the two lines of mice deficient in the ß-subunit of phosphodiesterase (rd1 and rd10 mice), where the degenerating retinas exhibit characteristic spontaneous hyperactivity and oscillatory local field potentials (LFPs). Additionally, there is a robust ~10 Hz rhythmic burst of retinal ganglion cell (RGC) spikes on the trough of the oscillatory LFP. In rd1 mice, the rhythmic burst of RGC spikes is always phase-locked with the oscillatory LFP and this phase-locking property is preserved regardless of postnatal ages. However, in rd10 mice, the frequency of the oscillatory rhythm changes according to postnatal age, suggesting that this rhythm might be a marker of the stage of degeneration. Furthermore when a biphasic current stimulus is applied to rd10 mice degenerate retina, distinct RGC response patterns that correlate with the stage of degeneration emerge. This review also considers the significance of these response properties.

7.
Synapse ; 59(4): 235-42, 2006 Mar 15.
Article in English | MEDLINE | ID: mdl-16385550

ABSTRACT

There is evidence that glutamate may participate as a transmitter at the junction between Merkel cells and the nerve terminals of slowly adapting type I (St I) units. We recorded extracellularly from the deep vibrissal nerve of an isolated rat vibrissa preparation in vitro. Five second trapezoid stimulus ramp deflections of the hair shaft were used to evoke responses. We bath-applied two compounds, which we planned would interfere with glutamatergic transmission. (2S)-2-Amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495) was used at concentrations up to 100 microM to block all known metabotropic glutamate (mGlu) receptors. The racemic mixture (RS)-4-carboxy-3-hydroxyphenylglycine ((RS)-4C3HPG) was used up to 100 microM to block ionotropic and Group I metabotropic glutamate receptors, and as an agonist at Group II mGlu receptors. Unexpectedly, both compounds had rapid onset excitatory effects on mechanically-evoked responses. (RS)-4C3HPG increased responses, with a mean 146% of control (P < 0.05) in a concentration-dependent manner. LY341495 increased responses, with a mean 128% of control (P < 0.05). With (RS)-4C3HPG in particular, it was noted that the static component (the firing during the last 1 s plateau) was preferentially enhanced relative to the dynamic component (firing during the first 0.5 s). Rapid recovery was seen after wash. Slowly adapting type II units, which have no junctional transmission, were completely unaffected by these compounds up to 200 microM. These results suggest that mGlu receptors play a role in Merkel cell-neurite complex mechanotransduction, although other explanations are considered.


Subject(s)
Excitatory Amino Acid Antagonists/pharmacology , Mechanoreceptors/metabolism , Mechanotransduction, Cellular/physiology , Receptors, Metabotropic Glutamate/drug effects , Receptors, Metabotropic Glutamate/metabolism , Vibrissae/innervation , Animals , Glutamic Acid/metabolism , Male , Mechanoreceptors/drug effects , Mechanotransduction, Cellular/drug effects , Merkel Cells/drug effects , Merkel Cells/metabolism , Organ Culture Techniques , Physical Stimulation , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...