Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Geophys Res Lett ; 49(8): e2021GL097309, 2022 Apr 28.
Article in English | MEDLINE | ID: mdl-35866056

ABSTRACT

The mechanisms for chaos terrain formation on Europa have long been a source of debate in the scientific community. There exist numerous theoretical and numerical models for chaos formation, but to date there has been a lack of quantifiable observations that can be used to constrain models and permit comparison to the outputs of these chaos models. Here, we use mapping and statistical analysis to develop a quantitative description of chaos terrain and their observed morphologies. For nine chaos features, we map every block, or region of pre-existing terrain within disrupted matrix. We demonstrate that chaos terrains follow a continuous spectrum of morphologies between two endmembers, platy and knobby. We find that any given chaos terrain's morphology can be quantified by means of the linearized exponential slope of its cumulative block area distribution. This quantitative metric provides a new diagnostic parameter in future studies of chaos terrain formation and comparison.

2.
Astrobiology ; 13(8): 740-73, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23924246

ABSTRACT

The prospect of a future soft landing on the surface of Europa is enticing, as it would create science opportunities that could not be achieved through flyby or orbital remote sensing, with direct relevance to Europa's potential habitability. Here, we summarize the science of a Europa lander concept, as developed by our NASA-commissioned Science Definition Team. The science concept concentrates on observations that can best be achieved by in situ examination of Europa from its surface. We discuss the suggested science objectives and investigations for a Europa lander mission, along with a model planning payload of instruments that could address these objectives. The highest priority is active sampling of Europa's non-ice material from at least two different depths (0.5-2 cm and 5-10 cm) to understand its detailed composition and chemistry and the specific nature of salts, any organic materials, and other contaminants. A secondary focus is geophysical prospecting of Europa, through seismology and magnetometry, to probe the satellite's ice shell and ocean. Finally, the surface geology can be characterized in situ at a human scale. A Europa lander could take advantage of the complex radiation environment of the satellite, landing where modeling suggests that radiation is about an order of magnitude less intense than in other regions. However, to choose a landing site that is safe and would yield the maximum science return, thorough reconnaissance of Europa would be required prior to selecting a scientifically optimized landing site.


Subject(s)
Exobiology , Geology , Jupiter , Space Flight , Oceans and Seas
3.
Science ; 251(4990): 180-3, 1991 Jan 11.
Article in English | MEDLINE | ID: mdl-17836947

ABSTRACT

Arecibo high-resolution radar images of the southern hemisphere of Venus extending to 78 degrees S show that the surface of the Themis-Alpha-Lada region is characterized by linear deformation zones with volcanoes and corona-like features and by regional volcanic deposits (primarily plains, small shields, and large edifices). Large-scale areal deformation is limited to the tessera of Alpha Regio. Lada Terra, in the southern high latitudes, contains several large coronae, in contrast to Ishtar Terra in the northern high latitudes. The density of craters of possible impact origin is somewhat lower than that observed in the Venera 15 and 16 coverage; these data extend to 43 percent of the areas of the surface of Venus with ages of less than about 1 billion years.

4.
Science ; 246(4928): 373-7, 1989 Oct 20.
Article in English | MEDLINE | ID: mdl-17747920

ABSTRACT

Arecibo high-resolution (1.5 to 2 km) radar data of Venus for the area extending from Beta Regio to western Eisila Regio provide strong evidence that the mountains in Beta and Eisila Regiones and plains in and adjacent to Guinevere Planitia are of volcanic origin. Recognized styles of volcanism include large volcanic edifices on the Beta and Eisila rises related to regional structural trends, plains with multiple source vents and a mottled appearance due to the ponding of volcanic flows, and plains with bright features surrounded by extensive quasi-circular radar-dark halos. The high density of volcanic vents in the plains suggests that heat loss by abundant and widely distributed plains volcanism may be more significant than previously recognized. The low density of impact craters greater than 15 km in diameter in this region compared to the average density for the higher northern latitudes suggests that the plains have a younger age.

SELECTION OF CITATIONS
SEARCH DETAIL
...