Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
EMBO Mol Med ; 15(2): e16554, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36597789

ABSTRACT

Understanding the molecular mechanisms that contribute to the appearance of chemotherapy resistant cell populations is necessary to improve cancer treatment. We have now investigated the role of ß-catenin/CTNNB1 in the evolution of T-cell Acute Lymphoblastic Leukemia (T-ALL) patients and its involvement in therapy resistance. We have identified a specific gene signature that is directly regulated by ß-catenin, TCF/LEF factors and ZBTB33/Kaiso in T-ALL cell lines, which is highly and significantly represented in five out of six refractory patients from a cohort of 40 children with T-ALL. By subsequent refinement of this gene signature, we found that a subset of ß-catenin target genes involved with RNA-processing function are sufficient to segregate T-ALL refractory patients in three independent cohorts. We demonstrate the implication of ß-catenin in RNA and protein synthesis in T-ALL and provide in vitro and in vivo experimental evidence that ß-catenin is crucial for the cellular response to chemotherapy, mainly in the cellular recovery phase after treatment. We propose that combination treatments involving chemotherapy plus ß-catenin inhibitors will enhance chemotherapy response and prevent disease relapse in T-ALL patients.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , beta Catenin , Child , Humans , beta Catenin/metabolism , RNA , T-Lymphocytes/metabolism , Transcription Factors/metabolism
2.
Genome Biol ; 21(1): 284, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33225950

ABSTRACT

BACKGROUND: Adult T cell acute lymphoblastic leukemia (T-ALL) is a rare disease that affects less than 10 individuals in one million. It has been less studied than its cognate pediatric malignancy, which is more prevalent. A higher percentage of the adult patients relapse, compared to children. It is thus essential to study the mechanisms of relapse of adult T-ALL cases. RESULTS: We profile whole-genome somatic mutations of 19 primary T-ALLs from adult patients and the corresponding relapse malignancies and analyze their evolution upon treatment in comparison with 238 pediatric and young adult ALL cases. We compare the mutational processes and driver mutations active in primary and relapse adult T-ALLs with those of pediatric patients. A precise estimation of clock-like mutations in leukemic cells shows that the emergence of the relapse clone occurs several months before the diagnosis of the primary T-ALL. Specifically, through the doubling time of the leukemic population, we find that in at least 14 out of the 19 patients, the population of relapse leukemia present at the moment of diagnosis comprises more than one but fewer than 108 blasts. Using simulations, we show that in all patients the relapse appears to be driven by genetic mutations. CONCLUSIONS: The early appearance of a population of leukemic cells with genetic mechanisms of resistance across adult T-ALL cases constitutes a challenge for treatment. Improving early detection of the malignancy is thus key to prevent its relapse.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Child , DNA Helicases/genetics , Female , Humans , Models, Genetic , Mutation , Nuclear Proteins/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Recurrence , T-Lymphocytes , Transcription Factors/genetics , Whole Genome Sequencing , Young Adult
3.
Nat Rev Cancer ; 20(10): 555-572, 2020 10.
Article in English | MEDLINE | ID: mdl-32778778

ABSTRACT

A fundamental goal in cancer research is to understand the mechanisms of cell transformation. This is key to developing more efficient cancer detection methods and therapeutic approaches. One milestone towards this objective is the identification of all the genes with mutations capable of driving tumours. Since the 1970s, the list of cancer genes has been growing steadily. Because cancer driver genes are under positive selection in tumorigenesis, their observed patterns of somatic mutations across tumours in a cohort deviate from those expected from neutral mutagenesis. These deviations, which constitute signals of positive selection, may be detected by carefully designed bioinformatics methods, which have become the state of the art in the identification of driver genes. A systematic approach combining several of these signals could lead to a compendium of mutational cancer genes. In this Review, we present the Integrative OncoGenomics (IntOGen) pipeline, an implementation of such an approach to obtain the compendium of mutational cancer drivers. Its application to somatic mutations of more than 28,000 tumours of 66 cancer types reveals 568 cancer genes and points towards their mechanisms of tumorigenesis. The application of this approach to the ever-growing datasets of somatic tumour mutations will support the continuous refinement of our knowledge of the genetic basis of cancer.


Subject(s)
Genetic Predisposition to Disease , Mutation , Neoplasms/genetics , Oncogenes , Animals , Biomarkers, Tumor , Cell Transformation, Neoplastic/genetics , Computational Biology/methods , Gene Expression Regulation, Neoplastic , Genetic Association Studies , Genomics/methods , Humans , Neoplasms/diagnosis , Neoplasms/metabolism , Neoplasms/therapy , Signal Transduction , Structure-Activity Relationship
4.
Nature ; 583(7815): 265-270, 2020 07.
Article in English | MEDLINE | ID: mdl-32581361

ABSTRACT

Cancers arise through the acquisition of oncogenic mutations and grow by clonal expansion1,2. Here we reveal that most mutagenic DNA lesions are not resolved into a mutated DNA base pair within a single cell cycle. Instead, DNA lesions segregate, unrepaired, into daughter cells for multiple cell generations, resulting in the chromosome-scale phasing of subsequent mutations. We characterize this process in mutagen-induced mouse liver tumours and show that DNA replication across persisting lesions can produce multiple alternative alleles in successive cell divisions, thereby generating both multiallelic and combinatorial genetic diversity. The phasing of lesions enables accurate measurement of strand-biased repair processes, quantification of oncogenic selection and fine mapping of sister-chromatid-exchange events. Finally, we demonstrate that lesion segregation is a unifying property of exogenous mutagens, including UV light and chemotherapy agents in human cells and tumours, which has profound implications for the evolution and adaptation of cancer genomes.


Subject(s)
Chromosome Segregation/genetics , Evolution, Molecular , Genome/genetics , Neoplasms/genetics , Alleles , Animals , DNA Repair , DNA Replication , ErbB Receptors/metabolism , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , Mice , Mutation , Neoplasms/pathology , Selection, Genetic , Signal Transduction , Sister Chromatid Exchange , Transcription, Genetic , raf Kinases/metabolism , ras Proteins/metabolism
5.
Cognition ; 155: 30-43, 2016 10.
Article in English | MEDLINE | ID: mdl-27343481

ABSTRACT

We investigated whether nonhuman great apes (N=23), 2.5-year-old (N=20), and 3-year-old children (N=40) infer causal relations from patterns of variation and covariation by adapting the blicket detector paradigm for apes. We presented chimpanzees (Pan troglodytes), bonobos (Pan paniscus), orangutans (Pongo abelii), gorillas (Gorilla gorilla), and children (Homo sapiens) with a novel reward dispenser, the blicket detector. The detector was activated by inserting specific (yet randomly determined) objects, the so-called blickets. Once activated a reward was released, accompanied by lights and a short tone. Participants were shown different patterns of variation and covariation between two different objects and the activation of the detector. When subsequently choosing between one of the two objects to activate the detector on their own all species, except gorillas (who failed the training), took these patterns of correlation into account. In particular, apes and 2.5-year-old children ignored objects whose effect on the detector completely depended on the presence of another object. Follow-up experiments explored whether the apes and children were also able to re-evaluate evidence retrospectively. Only children (3-year-olds in particular) were able to make such retrospective inferences about causal structures from observing the effects of the experimenter's actions. Apes succeeded here only when they observed the effects of their own interventions. Together, this study provides evidence that apes, like young children, accurately infer causal structures from patterns of (co)variation and that they use this information to inform their own interventions.


Subject(s)
Pattern Recognition, Visual , Problem Solving , Animals , Child, Preschool , Gorilla gorilla , Humans , Pan paniscus , Pan troglodytes , Pongo abelii , Psychomotor Performance , Reward , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...