Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
J Exp Bot ; 68(5): 1199-1211, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28199673

ABSTRACT

Numerous reports have shown that various rhizobia can interact with non-host plant species, improving mineral nutrition and promoting plant growth. To further investigate the effects of such non-host interactions on root development and functions, we inoculated Arabidopsis thaliana with the model nitrogen fixing rhizobacterium Mesorhizobium loti (strain MAFF303099). In vitro, we show that root colonization by M. loti remains epiphytic and that M. loti cells preferentially grow at sites where primary and secondary roots intersect. Besides resulting in an increase in shoot biomass production, colonization leads to transient inhibition of primary root growth, strong promotion of root hair elongation and increased apoplasmic acidification in periphery cells of a sizeable part of the root system. Using auxin mutants, axr1-3 and aux1-100, we show that a plant auxin pathway plays a major role in inhibiting root growth but not in promoting root hair elongation, indicating that root developmental responses involve several distinct pathways. Finally, using a split root device, we demonstrate that root colonization by M. loti, as well as by the bona fide plant growth promoting rhizobacteria Azospirillum brasilense and Pseudomonas, affect root development via local transduction pathways restricted to the colonised regions of the root system.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/microbiology , Mesorhizobium/physiology , Arabidopsis/metabolism , Indoleacetic Acids , Nitrogen Fixation , Plant Roots/growth & development , Plant Roots/microbiology , Signal Transduction
2.
Cell Mol Life Sci ; 67(15): 2511-32, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20333436

ABSTRACT

Bacterial Trk and Ktr, fungal Trk and plant HKT form a family of membrane transporters permeable to K(+) and/or Na(+) and characterized by a common structure probably derived from an ancestral K(+) channel subunit. This transporter family, specific of non-animal cells, displays a large diversity in terms of ionic permeability, affinity and energetic coupling (H(+)-K(+) or Na(+)-K(+) symport, K(+) or Na(+) uniport), which might reflect a high need for adaptation in organisms living in fluctuating or dilute environments. Trk/Ktr/HKT transporters are involved in diverse functions, from K(+) or Na(+) uptake to membrane potential control, adaptation to osmotic or salt stress, or Na(+) recirculation from shoots to roots in plants. Structural analyses of bacterial Ktr point to multimeric structures physically interacting with regulatory subunits. Elucidation of Trk/Ktr/HKT protein structures along with characterization of mutated transporters could highlight functional and evolutionary relationships between ion channels and transporters displaying channel-like features.


Subject(s)
Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Plants/metabolism , Potassium/metabolism , Sodium/metabolism , Biological Transport/genetics , Ion Channels/genetics , Ion Channels/metabolism , Ion Transport/genetics , Membrane Potentials/genetics , Mutation , Plant Roots/genetics , Plant Roots/metabolism , Plants/genetics , Sodium, Dietary/metabolism
3.
Plant Methods ; 1: 14, 2005 Dec 19.
Article in English | MEDLINE | ID: mdl-16359560

ABSTRACT

BACKGROUND: In silico analyses based on sequence similarities with animal channels have identified a large number of plant genes likely to encode ion channels. The attempts made to characterise such putative plant channels at the functional level have most often relied on electrophysiological analyses in classical expression systems, such as Xenopus oocytes or mammalian cells. In a number of cases, these expression systems have failed so far to provide functional data and one can speculate that using a plant expression system instead of an animal one might provide a more efficient way towards functional characterisation of plant channels, and a more realistic context to investigate regulation of plant channels. RESULTS: With the aim of developing a plant expression system readily amenable to electrophysiological analyses, we optimised experimental conditions for preparation and transformation of tobacco mesophyll protoplasts and engineered expression plasmids, that were designed to allow subcellular localisation and functional characterisation of ion channels eventually in presence of their putative (possibly over-expressed) regulatory partners. Two inward K+ channels from the Shaker family were functionally expressed in this system: not only the compliant KAT1 but also the recalcitrant AKT1 channel, which remains electrically silent when expressed in Xenopus oocytes or in mammalian cells. CONCLUSION: The level of endogenous currents in control protoplasts seems compatible with the use of the described experimental procedures for the characterisation of plant ion channels, by studying for instance their subcellular localisation, functional properties, structure-function relationships, interacting partners and regulation, very likely in a more realistic context than the classically used animal systems.

4.
New Phytol ; 163(3): 481-498, 2004 Sep.
Article in English | MEDLINE | ID: mdl-33873734

ABSTRACT

The basidiomycete Hebeloma cylindrosporum has been extensively studied with respect to mycorrhiza differentiation and metabolism and also to population dynamics. Its life cycle can be reproduced in vitro and it can be genetically transformed. Combined biochemical, cytological, genetical and molecular approaches led to the characterisation of mutant strains affected in mycorrhiza formation. These studies demonstrated the role of fungal auxin as a signal molecule in mycorrhiza formation and should allow the characterisation of essential fungal genes necessary to achieve a compatible symbiotic interaction. Random sequencing of cDNAs has identified numerous key functional genes which allowed dissection of essential nitrogen assimilation pathways. H. cylindrosporum also proved to be a remarkable model species to uncover the dynamics of natural populations of ectomycorrhizal fungi and the way in which they respond and adapt to anthropogenic disturbance of the forest ecosystem. Although studies on mycorrhiza differentiation and functioning and those on the population dynamics of H. cylindrosporum have been carried out independently, they are likely to converge in a renewed molecular ecophysiology which will envisage how ectomycorrhizal symbiosis functions under varying field conditions. Contents Summary 481 I. Introduction 482 II. Taxonomy, distribution, autecology, and host range of H. cylindrosporum 482 III. The Hebeloma cylindrosporum toolbox 483 IV. Mycorrhiza differentiation 486 V. Nutritional interactions 488 VI. Genetic diversity and dynamics of H. cylindrosporum populations in P. pinaster forest ecosystems 491 VII. Future directions 494 Acknowledgements 494 References 494.

5.
J Biol Chem ; 276(5): 3215-21, 2001 Feb 02.
Article in English | MEDLINE | ID: mdl-11042178

ABSTRACT

Stomatal opening, which controls gas exchanges between plants and the atmosphere, results from an increase in turgor of the two guard cells that surround the pore of the stoma. KAT1 was the only inward K(+) channel shown to be expressed in Arabidopsis guard cells, where it was proposed to mediate a K(+) influx that enables stomatal opening. We report that another Arabidopsis K(+) channel, KAT2, is expressed in guard cells. More than KAT1, KAT2 displays functional features resembling those of native inward K(+) channels in guard cells. Coexpression in Xenopus oocytes and two-hybrid experiments indicated that KAT1 and KAT2 can form heteromultimeric channels. The data indicate that KAT2 plays a crucial role in the stomatal opening machinery.


Subject(s)
Arabidopsis Proteins , Arabidopsis/enzymology , Potassium Channels, Inwardly Rectifying , Potassium Channels/biosynthesis , Potassium Channels/genetics , Potassium Channels/metabolism , Amino Acid Sequence , Animals , Arabidopsis/genetics , Base Sequence , Cloning, Molecular , DNA, Plant/analysis , Molecular Sequence Data , Oocytes/metabolism , Plant Proteins , Potassium Channels, Voltage-Gated , RNA, Messenger/metabolism , Sequence Homology, Amino Acid , Transfection , Xenopus laevis
6.
Plant J ; 23(4): 527-38, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10972879

ABSTRACT

KAT1 and AKT1 belong to the multigenic family of the inwardly rectifying Shaker-like plant K+ channels. They were biochemically characterized after expression in insect cells using recombinant baculoviruses. The channels were solubilized from microsomal fractions prepared from infected cells (among eight different detergents only one, L-alpha-lysophosphatidylcholine, was efficient for solubilization), and purified to homogeneity using immunoaffinity (KAT1) or ion-exchange and size exclusion (AKT1) techniques. The following results were obtained with the purified polypeptides: (i) neither KAT1 nor AKT1 was found to be glycosylated; (ii) both polypeptides were mainly present as homotetrameric structures, supporting the hypothesis of a tetrameric structure for the functional channels; (iii) no heteromeric KAT1/AKT1 assembly was detected when the two polypeptides were co-expressed in insect cells. The use of the two-hybrid system in yeast also failed to detect any interaction between KAT1 and AKT1 polypeptides. Because of these negative results, the hypothesis that plant K+-channel subunits are able to co-assemble without any discrimination, previously put forward based on co-expression in Xenopus oocytes of various K+-channel subunits (including KAT1 and AKT1), has still to be supported by independent approaches. Co-localization of channel subunits within the same plant tissue/cell does not allow us to conclude that the subunits form heteromultimeric channels.


Subject(s)
Arabidopsis Proteins , Arabidopsis/genetics , Plant Proteins/genetics , Potassium Channels, Inwardly Rectifying , Potassium Channels/genetics , Animals , Arabidopsis/metabolism , Baculoviridae/genetics , Blotting, Western , Cell Extracts , Cell Line , Chromatography, Affinity , Electrophoresis, Polyacrylamide Gel , Glycosylation , Insecta/cytology , Plant Proteins/metabolism , Potassium Channels/metabolism , Two-Hybrid System Techniques
7.
Plant Cell ; 12(6): 837-51, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10852932

ABSTRACT

RNA gel blot and reverse transcription-polymerase chain reaction experiments were used to identify a single K(+) channel gene in Arabidopsis as expressed throughout the plant. Use of the beta-glucuronidase reporter gene revealed expression of this gene, AKT2/AKT3, in both source and sink phloem tissues. The AKT2/AKT3 gene corresponds to two previously identified cDNAs, AKT2 (reconstructed at its 5' end) and AKT3, the open reading frame of the latter being shorter at its 5' end than that of the former. Rapid amplification of cDNA ends with polymerase chain reaction and site-directed mutagenesis was performed to identify the initiation codon for AKT2 translation. All of the data are consistent with the hypothesis that the encoded polypeptide corresponds to the longest open reading frame previously identified (AKT2). Electrophysiological characterization (macroscopic and single-channel currents) of AKT2 in both Xenopus oocytes and COS cells revealed a unique gating mode and sensitivity to pH (weak inward rectification, inhibition, and increased rectification upon internal or external acidification), suggesting that AKT2 has enough functional plasticity to perform different functions in phloem tissue of source and sink organs. The plant stress hormone abscisic acid was shown to increase the amount of AKT2 transcript, suggesting a role for the AKT2 in the plant response to drought.


Subject(s)
Arabidopsis Proteins , Arabidopsis/genetics , Plant Proteins/genetics , Potassium Channels/genetics , Amino Acid Sequence , Animals , Arabidopsis/metabolism , Arabidopsis/physiology , COS Cells , Hydrogen-Ion Concentration , In Vitro Techniques , Molecular Sequence Data , Oocytes , Patch-Clamp Techniques , Plant Proteins/metabolism , Plant Proteins/physiology , Plant Structures/metabolism , Plants, Genetically Modified , Potassium Channels/metabolism , Potassium Channels/physiology , Reverse Transcriptase Polymerase Chain Reaction , Xenopus
8.
FEBS Lett ; 466(2-3): 351-4, 2000 Jan 28.
Article in English | MEDLINE | ID: mdl-10682858

ABSTRACT

SKOR, an Arabidopsis depolarisation-activated K+-selective channel, was expressed in Xenopus oocytes, and external and internal pH effects were analysed. Internal pH was manipulated by injections of alkaline or acidic solutions or by acid load from acetate-containing medium. An internal pH decrease from 7.4 to 7.2 induced a strong (ca. 80%) voltage-independent decrease of the macroscopic SKOR current, the macroscopic gating parameters and the single channel conductance remained unchanged. An external acidification from 7.4 to 6.4 had similar effects. It is proposed that pH changes regulate the number of channels available for activation. Sensitivity of SKOR activity to pH in the physiological range suggests that internal and external pH play a role in the regulation of K+ secretion into the xylem sap.


Subject(s)
Arabidopsis Proteins , Arabidopsis/metabolism , Hydrogen-Ion Concentration , Potassium Channels/metabolism , Animals , Ion Channels/metabolism , Ion Channels/physiology , Membrane Potentials , Patch-Clamp Techniques , Shaker Superfamily of Potassium Channels , Xenopus
9.
Mol Plant Microbe Interact ; 13(2): 203-9, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10659710

ABSTRACT

Beticolins are toxins produced by Cercospora beticola, a phytopathogenic fungus responsible for the leaf spot disease of sugar beet. They form a family of 20 nonpeptidic compounds (named B0 to B19) that share the same polycyclic skeleton but differ by isomeric configuration (ortho- or para-) and by a variable residue R (bridging two carbons in one of the six cycles). It has been previously shown that B0 assembles itself into a multimeric structure and forms ion channels into planar lipid bilayers (C. Goudet, A.-A. Very, M.-L. Milat, M. Ildefonse, J.-B. Thibaud, H. Sentenac, and J.-P. Blein, Plant J. 14:359-364, 1998). In the present work, we investigate pore formation by three ortho-beticolins, B0, B2, and B4, and their related (i.e., same R) para-isomers, B13, B1, and B3, respectively, using planar lipid bilayers. All beticolins were able to form ion channels with multiple conductance states, although the type of cyclization (ortho- or para-) and residue (R) result in variations of channel conductance and ionic permeability, respectively. Channel formation by beticolins is likely to be involved in the biological activity of these toxins.


Subject(s)
Ascomycota/pathogenicity , Ion Channels/drug effects , Mycotoxins/chemistry , Mycotoxins/toxicity , Chenopodiaceae/microbiology , Lipid Bilayers , Plant Diseases/microbiology
10.
Curr Opin Plant Biol ; 2(6): 477-82, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10607654

ABSTRACT

Progress in identification of plant ion channels and development of electrophysiological analyses in heterologous expression systems and in planta, in combination with reverse genetic approaches, are providing the possibility of associating molecular entities with physiological functions. Recently, the first attempts to determine in vivo functions using knockout mutants demonstrated the roles of root ion channels. The search for proteins interacting with such channels leads to an even more complex view of the concerted action in protein networks.


Subject(s)
Ion Channels/physiology , Plants/metabolism , Potassium Channels, Inwardly Rectifying , Ion Channels/chemistry , Ion Channels/genetics , Ion Transport , Plant Proteins , Potassium Channels/chemistry , Potassium Channels/genetics , Potassium Channels/physiology , Protein Structure, Secondary
11.
Biophys J ; 77(6): 3052-9, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10585927

ABSTRACT

Beticolin 3 (B3) belongs to a family of nonpeptidic phytotoxins produced by the fungus Cercospora beticola, which present a broad spectrum of cytotoxic effects. We report here that, at cytotoxic concentration (10 microM), B3 formed voltage-independent, weakly selective ion channels with multiple conductance levels in planar lipid bilayers. In symmetrical standard solutions, conductance values of the first levels were, respectively, 16 +/- 1 pS, 32 +/- 2 pS, and 57 +/- 2 pS (n = 4) and so on, any conductance level being roughly twice the lower one. Whether a cluster organization of elementary channels or different channel structures underlies this particular property was addressed by investigating the ionic selectivity and the pore size corresponding to the first three conductance levels. Both selectivity and pore size were found to be almost independent of the conductance level. This indicated that multiple conductance behavior resulted from a cluster organization of "B3 elementary channels." According to the estimated pore size and analyses of x-ray diffraction of B3 microcrystals, a structural model for "B3 elementary channels" is proposed. The ability to form channels is likely to be involved in the biological activity of beticolins.


Subject(s)
Ion Channels/chemistry , Mycotoxins/chemistry , Biophysical Phenomena , Biophysics , Electric Conductivity , Heterocyclic Compounds, 4 or More Rings , In Vitro Techniques , Ion Channels/drug effects , Lipid Bilayers , Membrane Potentials , Models, Molecular , Molecular Conformation , Mycotoxins/toxicity
12.
Cell ; 94(5): 647-55, 1998 Sep 04.
Article in English | MEDLINE | ID: mdl-9741629

ABSTRACT

SKOR, a K+ channel identified in Arabidopsis, displays the typical hydrophobic core of the Shaker channel superfamily, a cyclic nucleotide-binding domain, and an ankyrin domain. Expression in Xenopus oocytes identified SKOR as the first member of the Shaker family in plants to be endowed with outwardly rectifying properties. SKOR expression is localized in root stelar tissues. A knockout mutant shows both lower shoot K+ content and lower xylem sap K+ concentration, indicating that SKOR is involved in K+ release into the xylem sap toward the shoots. SKOR expression is strongly inhibited by the stress phytohormone abscisic acid, supporting the hypothesis that control of K+ translocation toward the shoots is part of the plant response to water stress.


Subject(s)
Arabidopsis Proteins , Plant Proteins/isolation & purification , Potassium Channels/chemistry , Amino Acid Sequence , Animals , Arabidopsis , Cloning, Molecular , Gene Expression Regulation, Plant , Molecular Sequence Data , Plant Proteins/biosynthesis , Plant Proteins/genetics , Plant Proteins/physiology , Plant Structures/metabolism , RNA, Messenger/metabolism , RNA, Plant/metabolism , Shaker Superfamily of Potassium Channels
13.
Plant J ; 14(3): 359-64, 1998 May.
Article in English | MEDLINE | ID: mdl-9628029

ABSTRACT

Beticolins are toxins produced by the fungus Cercospora beticola. Using beticolin 0 (B0), we have produced a strong and Mg(2+)-dependent increase in the membrane conductance of Arabidopsis protoplasts and Xenopus oocytes. In protein-free artificial bilayers, discrete deflexions of current were observed (12 pS unitary conductance in symmetrical 100 mM KCl) in the presence of B0 (approximately 10 microM) and in the presence of nominal Mg2+. Addition of 50 microM Mg2+ induced a macroscopic current which could be reversed to single channel current by chelating Mg2+ with EDTA. Both unitary and macroscopic currents were ohmic. The increase in conductance of biological membranes triggered by B0 is therefore likely to originate from the ability of this toxin to organize itself into transmembrane pores in the presence of Mg2+. The pore is poorly selective, displaying permeability ratios PCl/PK, PNa/PK and PCa/PK close to 0.3, 0.65 and 0.4, respectively. Such channel-like activity could be involved in the deleterious biological activity of the toxin, by causing the collapse of ionic and electrical gradients through biological membranes together with Ca2+ influx and scrambling of cellular signals.


Subject(s)
Ascomycota/metabolism , Ion Channels/metabolism , Magnesium/metabolism , Mycotoxins/metabolism , Animals , Cations, Divalent , Cell Membrane/metabolism , Heterocyclic Compounds, 4 or More Rings , Membrane Potentials , Oocytes/metabolism , Xenopus
14.
EMBO J ; 16(12): 3455-63, 1997 Jun 16.
Article in English | MEDLINE | ID: mdl-9218788

ABSTRACT

All plant channels identified so far show high conservation throughout the polypeptide sequence except in the ankyrin domain which is present only in those closely related to AKT1. In this study, the architecture of the AKT1 protein has been investigated. AKT1 polypeptides expressed in the baculovirus/Sf9 cells system were found to assemble into tetramers as observed with animal Shaker-like potassium channel subunits. The AKT1 C-terminal intracytoplasmic region (downstream from the transmembrane domain) alone formed tetrameric structures when expressed in Sf9 cells, revealing a tetramerization process different from that of Shaker channels. Tests of subfragments from this sequence in the two-hybrid system detected two kinds of interaction. The first, involving two identical segments (amino acids 371-516), would form a contact between subunits, probably via their putative cyclic nucleotide-binding domains. The second interaction was found between the last 81 amino acids of the protein and a region lying between the channel hydrophobic core and the putative cyclic nucleotide-binding domain. As the interacting regions are highly conserved in all known plant potassium channels, the structural organization of AKT1 is likely to extend to these channels. The significance of this model with respect to animal cyclic nucleotide-gated channels is also discussed.


Subject(s)
Arabidopsis Proteins , Plant Proteins/metabolism , Potassium Channels/metabolism , Amino Acid Sequence , Animals , Binding Sites , Cell Line , Cytoplasm , Molecular Sequence Data , Plant Proteins/chemistry , Plant Proteins/genetics , Potassium Channels/chemistry , Potassium Channels/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Homology, Amino Acid , Spodoptera/cytology
15.
J Exp Bot ; 48 Spec No: 405-13, 1997 Mar.
Article in English | MEDLINE | ID: mdl-21245219

ABSTRACT

Functional expression of plant ion channels in the yeast Saccharomyces cerevisiae is readily demonstrated by the successful screening of plant cDNA libraries for complementation of transport defects in especially constructed strains of yeast. The first experiments of this sort identified two potassium-channel genes from Arabidopsis thaliana, designated KAT1 and AKT1 (Anderson et al., 1992; Sentenac et al., 1992), both of which code for proteins resembling the Shaker superfamily of K(+) channels in animal cells. Patch-clamp analysis, directly in yeast, of the two channel proteins (Kat1 and Akt1) reveals both functional similarities and functional differences: similarities in selectivity and in normal gating kinetics; and differences in time-dependent effects of ion replacement, in the affinities of blocking ions, and in dependence of gating kinetics on extracellular K(+). Kat1, previously described in yeast (Bertl et al., 1995), is about 20-fold more permeable to K(+) than to Na(+) or NH(+)(4), shows K(+)-independent gating kinetics, and is blocked with moderate effectiveness (30-50% at 10 mM) by barium and tetraethylammonium (TEA(+)) ions. Akt1, by contrast, is weakly inhibited by TEA(+), more strongly inhibited by Ba(2+), and very strongly inhibited by Cs(+). Furthermore Na(+) and NH(+)(4), while having about the same permeance to Akt1 as to Kat1, have delayed effects on Akt1: brief replacement of extracellular K(+) by Na(+) enhances by nearly 100% the subsequent K(+) currents after sodium removal; and brief replacement of K(+) by NH(+)(4) reduces subsequent K(+) currents by nearly 75%. Furthermore, lowering of extracellular K(+) concentration, by replacement with osmotically equivalent sorbitol, significantly retards the opening of Akt1 channels; that is, the gating kinetics for Akt1 are clearly influenced by the concentration of permeant ions. In this respect, Akt1 resembles the native yeast outward rectifier, Ypk1 (Duk1; Reid et al., 1996). The data suggest that all of the ions tested bind within the open channels, such that the weakly permeant species (Na(+), NH(+)(4)) are easily displaced by K(+), but the blocking species (Cs(+), Ba(2+), TEA(+)) are not easily displaced. With Akt1, furthermore, the permeant ions bind to a modulator site where they persist after removal from the medium, and through which they can alter the channel conductance. Extracellular K(+) itself also binds to a modulator site, thereby enhancing the rate of opening of Akt1.

17.
J Biol Chem ; 271(37): 22863-70, 1996 Sep 13.
Article in English | MEDLINE | ID: mdl-8798465

ABSTRACT

Two plant (Arabidopsis thaliana) K+ transport systems, KAT1 and AKT1, have been expressed in insect cells (Sf9 cell line) using recombinant baculoviruses. Microscopic observation after immunogold staining revealed that the expressed AKT1 and KAT1 polypeptides were mainly associated with internal membranes, but that a minute fraction was targeted to the cell membrane. KAT1 was known, from earlier electrophysiological characterization in Xenopus oocytes, to be an inwardly rectifying voltage-gated channel highly selective for K+, while similar experiments had failed to characterize AKT1. Insect cells expressing KAT1 displayed an exogenous inwardly rectifying K+ conductance reminiscent of that described previously in Xenopus oocytes expressing KAT1. Under similar conditions, cells expressing AKT1 showed a disturbed cell membrane electrical stability that precluded electrophysiological analysis. Use of a baculovirus transfer vector designed so as to decrease the expression level allowed the first electrophysiological characterization of AKT1. The baculovirus system can thus be used as an alternative method when expression in Xenopus oocytes is unsuccessful for electrophysiological characterization of the ion channel of interest. The plant AKT1 protein has been shown in this way to be an inwardly rectifying voltage-gated channel highly selective for K+ ions and sensitive to cGMP.


Subject(s)
Arabidopsis Proteins , Baculoviridae/genetics , Cloning, Molecular/methods , Genetic Vectors , Plant Proteins/metabolism , Potassium Channels, Inwardly Rectifying , Potassium Channels/metabolism , Adenosine Triphosphate/pharmacology , Animals , Arabidopsis , Cell Line , Cyclic GMP/pharmacology , Electrophysiology , Protein Processing, Post-Translational , Restriction Mapping , Spodoptera/cytology , Xenopus
18.
FEBS Lett ; 380(3): 229-32, 1996 Feb 19.
Article in English | MEDLINE | ID: mdl-8601430

ABSTRACT

Following the biophysical analysis of plant K+ channels in their natural environment, three members from the green branch of the evolutionary tree of life KAT1, AKT1, and KST1 have recently been identified on the molecular level. Among them, we focussed on the expression and characterization of the Arabidopsis thaliana K+ channel KAT1 in the insect cell line Sf9. The infection of Sf9 cells with KAT1-recombinant baculovirus resulted in functional expression of KAT1 channels, which was monitored by inward-rectifying, K+-selective (impermeable to Na+ and even NH4+) ionic conductance in whole-cell patch-clamp recordings. A voltage threshold as low as -60 to -80mV for voltage activation compared to other plant inward rectifiers in vivo, and to in vitro expression of KAT1 in Xenopus oocytes or yeast, may be indicative for channel modulation by the expression system. A rise in cytoplasmic Ca2+ concentration (up to 1 mM), a regulator of the inward rectifier in Vicia faba guard cells, did not modify the voltage dependence of KAT1 in Sf9 cells. The access to channel function on one side and channel protein on the other make Sf9 cells a suitable heterologous system for studies on the biophysical properties, post-traditional modification and assembly of a green inward rectifier.


Subject(s)
Arabidopsis/chemistry , Gene Expression , Plant Proteins/genetics , Potassium Channels, Inwardly Rectifying , Potassium Channels/genetics , Spodoptera/metabolism , Animals , Arabidopsis/genetics , Arabidopsis Proteins , Baculoviridae/genetics , Calcium/metabolism , Cell Line , Electric Conductivity , Patch-Clamp Techniques , Plant Proteins/physiology , Potassium Channels/physiology , Quaternary Ammonium Compounds/metabolism , Recombinant Proteins/metabolism
19.
Plant Mol Biol ; 29(5): 947-58, 1995 Dec.
Article in English | MEDLINE | ID: mdl-8555458

ABSTRACT

We have isolated and sequenced the genomic clone coding for the potassium transport system AKT1 of Arabidopsis thaliana. Southern blot analysis indicated that the gene is present in one copy in the Arabidopsis genome. The coding sequence is interrupted by ten introns. Sequence comparisons of AKT1 polypeptide with the voltage-gated inward rectifying Arabidopsis K+ channel KAT1, and with voltage- or cyclic nucleotide-gated channels from insects and mammals, revealed a highly conserved domain found specifically in both plant polypeptides, and corresponding to about the last 50 amino acids of their C-terminal region. Northern blot analysis of AKT1 expression in Arabidopsis seedlings indicated that AKT1 is preferentially expressed in roots. No transcript was detected in extracts from heterotrophic suspension culture cells. Depleting K+ in the Arabidopsis seedling culture medium for 4 days led to a strong decrease in K+ tissue content (ca. 50%), but did not affect AKT1 transcript level.


Subject(s)
Arabidopsis Proteins , Arabidopsis/genetics , Plant Proteins/genetics , Potassium Channels/genetics , Amino Acid Sequence , Base Sequence , Cloning, Molecular , Ion Channel Gating , Molecular Sequence Data , RNA, Messenger/genetics , Sequence Homology, Amino Acid
20.
Plant J ; 7(2): 321-32, 1995 Feb.
Article in English | MEDLINE | ID: mdl-7704050

ABSTRACT

The open reading frame from the Arabidopsis thaliana KAT1 cDNA was cloned in a transcription plasmid between the 3' and 5' untranslated regions of a beta-globin cDNA from Xenopus oocyte. The polyadenylated transcripts resulting from in vitro transcription gave rise to high levels of expression of KAT1 channel when injected in Xenopus oocytes. Upon hyperpolarization, a slow activating current could be recorded, inwardly- or outwardly-directed, depending on K+ external concentration. Predictions of the voltage-gated channel theory were shown to fit the data well. The equivalent gating charge and the half-activation potential ranged around 2 and -145 mV, respectively. KAT1 gating characteristics did not depend on K+ external concentration nor on external pH in the 5.0-7.5 range. KAT1 conductance was, however, increased (40%) when external pH was decreased from 6.5 to 5.0. The apparent affinity constant of KAT1 for K+ lay in the range 15-30 mM, at external pH 7.4. As for many K+ channels of animal cells, external caesium caused a voltage-dependent blockage of inward (but not outward) KAT1 current, whereas tetraethylammonium caused a voltage-independent block of both inward and outward KAT1 currents. In conclusion, high levels of expression made it possible to carry out the first quantitative analysis of KAT1 macroscopic currents. KAT1 channel was shown to display features similar to those of as yet uncloned inward-rectifying voltage-gated channels described in both plant cells (namely guard cells) and animal cells.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Genes, Plant , Oocytes/metabolism , Potassium Channels/genetics , Potassium Channels/metabolism , Animals , Cesium/pharmacology , Cloning, Molecular , Electric Conductivity , Female , Gene Expression , Hydrogen-Ion Concentration , In Vitro Techniques , Ion Channel Gating , Membrane Potentials , Potassium Channel Blockers , Tetraethylammonium , Tetraethylammonium Compounds/pharmacology , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...