Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
OMICS ; 25(2): 81-92, 2021 02.
Article in English | MEDLINE | ID: mdl-33170084

ABSTRACT

Solid tumors display a complex biology that requires a multipronged treatment strategy. Most anticancer interventions, including chemotherapy, are currently unable to prevent treatment resistance and relapse. In general, therapeutics target cancer cells and overlook the tumor microenvironment (TME) and the presence of cancer stem cells (CSCs) with self-renewal and tumorigenic abilities. CSCs have been postulated to play key roles in tumor initiation, progression, therapy resistance, and metastasis. Hence, CSC markers have been suggested as diagnostics to forecast cancer prognosis as well as molecular targets for new-generation cancer treatments, especially in resistant disease. We report here original findings on expression and prognostic significance of CSC markers in several cancers. We examined and compared the transcriptional expression of CSC markers (ABCB1, ABCG2, ALDH1A1, CD24, CD44, CD90, CD133, CXCR4, EPCAM, ICAM1, and NES) in tumor tissues versus the adjacent normal tissues using publicly available databases, The Cancer Genome Atlas and Gene Expression Profiling Interactive Analysis. We found that CSC transcriptional markers were, to a large extent, expressed in higher abundance in solid tumors such as colon, lung, pancreatic, and esophageal cancers. On the other hand, no CSC marker in our analysis was expressed in the same pattern in all cancers, while individual CSC marker expression, alone, was not significantly associated with overall patient survival. Innovation in next-generation cancer therapeutics and diagnostics ought to combine CSC markers as well as integrative diagnostics that pool knowledge from CSCs and other TME components and cancer cells.


Subject(s)
Biomarkers, Tumor , Neoplasms/etiology , Neoplasms/mortality , Neoplastic Stem Cells/metabolism , Computational Biology , Disease Management , Disease Susceptibility , Drug Development , Gene Expression Regulation, Neoplastic , Humans , Neoplasms/diagnosis , Neoplasms/drug therapy , Neoplastic Stem Cells/pathology , Prognosis , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology
2.
Cells ; 9(8)2020 08 13.
Article in English | MEDLINE | ID: mdl-32823711

ABSTRACT

Despite great strides being achieved in improving cancer patients' outcomes through better therapies and combinatorial treatment, several hurdles still remain due to therapy resistance, cancer recurrence and metastasis. Drug resistance culminating in relapse continues to be associated with fatal disease. The cancer stem cell theory posits that tumors are driven by specialized cancer cells called cancer stem cells (CSCs). CSCs are a subpopulation of cancer cells known to be resistant to therapy and cause metastasis. Whilst the debate on whether CSCs are the origins of the primary tumor rages on, CSCs have been further characterized in many cancers with data illustrating that CSCs display great abilities to self-renew, resist therapies due to enhanced epithelial to mesenchymal (EMT) properties, enhanced expression of ATP-binding cassette (ABC) membrane transporters, activation of several survival signaling pathways and increased immune evasion as well as DNA repair mechanisms. CSCs also display great heterogeneity with the consequential lack of specific CSC markers presenting a great challenge to their targeting. In this updated review we revisit CSCs within the tumor microenvironment (TME) and present novel treatment strategies targeting CSCs. These promising strategies include targeting CSCs-specific properties using small molecule inhibitors, immunotherapy, microRNA mediated inhibitors, epigenetic methods as well as targeting CSC niche-microenvironmental factors and differentiation. Lastly, we present recent clinical trials undertaken to try to turn the tide against cancer by targeting CSC-associated drug resistance and metastasis.


Subject(s)
Neoplasms/metabolism , Neoplasms/therapy , Neoplastic Stem Cells/metabolism , Tumor Microenvironment , ATP-Binding Cassette Transporters/metabolism , Cell Differentiation/drug effects , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Humans , Immunotherapy/methods , MicroRNAs/therapeutic use , Molecular Targeted Therapy/methods , Signal Transduction/drug effects
3.
Int J Mol Sci ; 19(10)2018 Sep 20.
Article in English | MEDLINE | ID: mdl-30241395

ABSTRACT

BACKGROUND: The functional interplay between tumor cells and their adjacent stroma has been suggested to play crucial roles in the initiation and progression of tumors and the effectiveness of chemotherapy. The extracellular matrix (ECM), a complex network of extracellular proteins, provides both physical and chemicals cues necessary for cell proliferation, survival, and migration. Understanding how ECM composition and biomechanical properties affect cancer progression and response to chemotherapeutic drugs is vital to the development of targeted treatments. METHODS: 3D cell-derived-ECMs and esophageal cancer cell lines were used as a model to investigate the effect of ECM proteins on esophageal cancer cell lines response to chemotherapeutics. Immunohistochemical and qRT-PCR evaluation of ECM proteins and integrin gene expression was done on clinical esophageal squamous cell carcinoma biopsies. Esophageal cancer cell lines (WHCO1, WHCO5, WHCO6, KYSE180, KYSE 450 and KYSE 520) were cultured on decellularised ECMs (fibroblasts-derived ECM; cancer cell-derived ECM; combinatorial-ECM) and treated with 0.1% Dimethyl sulfoxide (DMSO), 4.2 µM cisplatin, 3.5 µM 5-fluorouracil and 2.5 µM epirubicin for 24 h. Cell proliferation, cell cycle progression, colony formation, apoptosis, migration and activation of signaling pathways were used as our study endpoints. RESULTS: The expression of collagens, fibronectin and laminins was significantly increased in esophageal squamous cell carcinomas (ESCC) tumor samples compared to the corresponding normal tissue. Decellularised ECMs abrogated the effect of drugs on cancer cell cycling, proliferation and reduced drug induced apoptosis by 20⁻60% that of those plated on plastic. The mitogen-activated protein kinase-extracellular signal-regulated kinase (MEK-ERK) and phosphoinositide 3-kinase-protein kinase B (PI3K/Akt) signaling pathways were upregulated in the presence of the ECMs. Furthermore, our data show that concomitant addition of chemotherapeutic drugs and the use of collagen- and fibronectin-deficient ECMs through siRNA inhibition synergistically increased cancer cell sensitivity to drugs by 30⁻50%, and reduced colony formation and cancer cell migration. CONCLUSION: Our study shows that ECM proteins play a key role in the response of cancer cells to chemotherapy and suggest that targeting ECM proteins can be an effective therapeutic strategy against chemoresistant tumors.


Subject(s)
Carcinoma, Squamous Cell/pathology , Drug Resistance, Neoplasm , Esophageal Neoplasms/pathology , Tumor Microenvironment , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/pharmacology , Apoptosis , Carcinoma, Squamous Cell/drug therapy , Cell Cycle , Cell Line, Tumor , Cell Movement , Cell Proliferation , Collagen/metabolism , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Extracellular Matrix , Female , Fibronectins/metabolism , Gene Expression Profiling , Humans , Laminin/metabolism , Male , Middle Aged , Signal Transduction
4.
Stem Cells Int ; 2018: 2495848, 2018.
Article in English | MEDLINE | ID: mdl-30154861

ABSTRACT

Humans and animals lose tissues and organs due to congenital defects, trauma, and diseases. The human body has a low regenerative potential as opposed to the urodele amphibians commonly referred to as salamanders. Globally, millions of people would benefit immensely if tissues and organs can be replaced on demand. Traditionally, transplantation of intact tissues and organs has been the bedrock to replace damaged and diseased parts of the body. The sole reliance on transplantation has created a waiting list of people requiring donated tissues and organs, and generally, supply cannot meet the demand. The total cost to society in terms of caring for patients with failing organs and debilitating diseases is enormous. Scientists and clinicians, motivated by the need to develop safe and reliable sources of tissues and organs, have been improving therapies and technologies that can regenerate tissues and in some cases create new tissues altogether. Tissue engineering and/or regenerative medicine are fields of life science employing both engineering and biological principles to create new tissues and organs and to promote the regeneration of damaged or diseased tissues and organs. Major advances and innovations are being made in the fields of tissue engineering and regenerative medicine and have a huge impact on three-dimensional bioprinting (3D bioprinting) of tissues and organs. 3D bioprinting holds great promise for artificial tissue and organ bioprinting, thereby revolutionizing the field of regenerative medicine. This review discusses how recent advances in the field of regenerative medicine and tissue engineering can improve 3D bioprinting and vice versa. Several challenges must be overcome in the application of 3D bioprinting before this disruptive technology is widely used to create organotypic constructs for regenerative medicine.

5.
Int J Mol Sci ; 19(6)2018 May 25.
Article in English | MEDLINE | ID: mdl-29799486

ABSTRACT

The therapeutic properties of plants have been recognised since time immemorial. Many pathological conditions have been treated using plant-derived medicines. These medicines are used as concoctions or concentrated plant extracts without isolation of active compounds. Modern medicine however, requires the isolation and purification of one or two active compounds. There are however a lot of global health challenges with diseases such as cancer, degenerative diseases, HIV/AIDS and diabetes, of which modern medicine is struggling to provide cures. Many times the isolation of "active compound" has made the compound ineffective. Drug discovery is a multidimensional problem requiring several parameters of both natural and synthetic compounds such as safety, pharmacokinetics and efficacy to be evaluated during drug candidate selection. The advent of latest technologies that enhance drug design hypotheses such as Artificial Intelligence, the use of 'organ-on chip' and microfluidics technologies, means that automation has become part of drug discovery. This has resulted in increased speed in drug discovery and evaluation of the safety, pharmacokinetics and efficacy of candidate compounds whilst allowing novel ways of drug design and synthesis based on natural compounds. Recent advances in analytical and computational techniques have opened new avenues to process complex natural products and to use their structures to derive new and innovative drugs. Indeed, we are in the era of computational molecular design, as applied to natural products. Predictive computational softwares have contributed to the discovery of molecular targets of natural products and their derivatives. In future the use of quantum computing, computational softwares and databases in modelling molecular interactions and predicting features and parameters needed for drug development, such as pharmacokinetic and pharmacodynamics, will result in few false positive leads in drug development. This review discusses plant-based natural product drug discovery and how innovative technologies play a role in next-generation drug discovery.


Subject(s)
Biological Products/analysis , Computational Biology/methods , Drug Design , Drug Discovery/methods , Plants, Medicinal/chemistry , Artificial Intelligence , Automation, Laboratory , Biological Products/chemistry , Computer Simulation , Drug Industry , Humans , Models, Chemical , Phytotherapy/methods , Robotics , Software
6.
Molecules ; 23(4)2018 04 17.
Article in English | MEDLINE | ID: mdl-29673198

ABSTRACT

Background: Environmental pollution such as exposure to pro-carcinogens including benzo-α-pyrene is becoming a major problem globally. Moreover, the effects of benzo-α-pyrene (BaP) on drug pharmacokinetics, pharmacodynamics, and drug resistance warrant further investigation, especially in cancer outpatient chemotherapy where exposure to environmental pollutants might occur. Method: We report here on the effects of benzo-α-pyrene on esophageal cancer cells in vitro, alone, or in combination with chemotherapeutic drugs cisplatin, 5-flurouracil, or paclitaxel. As the study endpoints, we employed expression of proteins involved in cell proliferation, drug metabolism, apoptosis, cell cycle analysis, colony formation, migration, and signaling cascades in the WHCO1 esophageal cancer cell line after 24 h of treatment. Results: Benzo-α-pyrene had no significant effect on WHCO1 cancer cell proliferation but reversed the effect of chemotherapeutic drugs by reducing drug-induced cell death and apoptosis by 30−40% compared to drug-treated cells. The three drugs significantly reduced WHCO1 cell migration by 40−50% compared to control and BaP-treated cells. Combined exposure to drugs was associated with significantly increased apoptosis and reduced colony formation. Evaluation of survival signaling cascades showed that although the MEK-ERK and Akt pathways were activated in the presence of drugs, BaP was a stronger activator of the MEK-ERK and Akt pathways than the drugs. Conclusion: The present study suggest that BaP can reverse the effects of drugs on cancer cells via the activation of survival signaling pathways and upregulation of anti-apoptotic proteins such as Bcl-2 and Bcl-xL. Our data show that BaP contribute to the development of chemoresistant cancer cells.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Pyrenes/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Cell Survival/genetics , Cisplatin/pharmacology , Drug Resistance, Neoplasm/genetics , Fluorouracil/pharmacology , Humans , Paclitaxel/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics
7.
OMICS ; 22(1): 17-34, 2018 01.
Article in English | MEDLINE | ID: mdl-29356626

ABSTRACT

Disruptive innovations in medicine are game-changing in nature and bring about radical shifts in the way we understand human diseases, their treatment, and/or prevention. Yet, disruptive innovations in cancer drug design and development are still limited. Therapies that cure all cancer patients are in short supply or do not exist at all. Chief among the causes of this predicament is drug resistance, a mechanism that is much more dynamic than previously understood. Drug resistance has limited the initial success experienced with biomarker-guided targeted therapies as well. A major contributor to drug resistance is intratumor heterogeneity. For example, within solid tumors, there are distinct subclones of cancer cells, presenting profound complexity to cancer treatment. Well-known contributors to intratumor heterogeneity are genomic instability, the microenvironment, cellular genotype, cell plasticity, and stochastic processes. This expert review explains that for oncology drug design and development to be more innovative, we need to take into account intratumor heterogeneity. Initially thought to be the preserve of cancer cells, recent evidence points to the highly heterogeneous nature and diverse locations of stromal cells, such as cancer-associated fibroblasts (CAFs) and cancer-associated macrophages (CAMs). Distinct subpopulations of CAFs and CAMs are now known to be located immediately adjacent and distant from cancer cells, with different subpopulations exerting different effects on cancer cells. Disruptive innovation and precision medicine in clinical oncology do not have to be a distant reality, but can potentially be achieved by targeting these spatially separated and exclusive cancer cell subclones and CAF subtypes. Finally, we emphasize that disruptive innovations in drug discovery and development will likely come from drugs whose effect is not necessarily tumor shrinkage.


Subject(s)
Neoplasms/etiology , Neoplasms/metabolism , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Clonal Evolution/genetics , Disease Management , Drug Design , Drug Development , Genetic Heterogeneity , Genetic Variation , Humans , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/pathology , Phenotype , Stochastic Processes , Tumor Microenvironment
9.
Int J Mol Sci ; 18(7)2017 Jul 21.
Article in English | MEDLINE | ID: mdl-28754000

ABSTRACT

Chemoresistance is a leading cause of morbidity and mortality in cancer and it continues to be a challenge in cancer treatment. Chemoresistance is influenced by genetic and epigenetic alterations which affect drug uptake, metabolism and export of drugs at the cellular levels. While most research has focused on tumor cell autonomous mechanisms of chemoresistance, the tumor microenvironment has emerged as a key player in the development of chemoresistance and in malignant progression, thereby influencing the development of novel therapies in clinical oncology. It is not surprising that the study of the tumor microenvironment is now considered to be as important as the study of tumor cells. Recent advances in technological and analytical methods, especially 'omics' technologies, has made it possible to identify specific targets in tumor cells and within the tumor microenvironment to eradicate cancer. Tumors need constant support from previously 'unsupportive' microenvironments. Novel therapeutic strategies that inhibit such microenvironmental support to tumor cells would reduce chemoresistance and tumor relapse. Such strategies can target stromal cells, proteins released by stromal cells and non-cellular components such as the extracellular matrix (ECM) within the tumor microenvironment. Novel in vitro tumor biology models that recapitulate the in vivo tumor microenvironment such as multicellular tumor spheroids, biomimetic scaffolds and tumor organoids are being developed and are increasing our understanding of cancer cell-microenvironment interactions. This review offers an analysis of recent developments on the role of the tumor microenvironment in the development of chemoresistance and the strategies to overcome microenvironment-mediated chemoresistance. We propose a systematic analysis of the relationship between tumor cells and their respective tumor microenvironments and our data show that, to survive, cancer cells interact closely with tumor microenvironment components such as mesenchymal stem cells and the extracellular matrix.


Subject(s)
Drug Resistance, Neoplasm , Neoplasms/pathology , Tumor Microenvironment , Cell Survival , Epigenesis, Genetic , Extracellular Matrix/pathology , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Mesenchymal Stem Cells/pathology , Models, Biological , Neoplasms/genetics , Signal Transduction
10.
OMICS ; 20(12): 681-691, 2016 12.
Article in English | MEDLINE | ID: mdl-27930094

ABSTRACT

Clinical oncology is in need of therapeutic innovation. New hypotheses and concepts for translation of basic research to novel diagnostics and therapeutics are called for. In this context, the cancer stem cell (CSC) hypothesis rests on the premise that tumors comprise tumor cells and a subset of tumor-initiating cells, CSCs, in a quiescent state characterized by slow cell cycling and expression of specific stem cell surface markers with the capability to maintain a tumor in vivo. The CSCs have unlimited self-renewal abilities and propagate tumors through division into asymmetric daughter cells. This differentiation is induced by both genetic and environmental factors. Another characteristic of CSCs is their therapeutic resistance, which is due to their quiescent state and slow dividing. Notably, the CSC phenotype differs greatly between patients and different cancer types. The CSCs may differ genetically and phenotypically and may include primary CSCs and metastatic stem cells circulating within the blood system. Targeting CSCs will require the knowledge of distinct stem cells within the tumor. CSCs can differentiate into nontumorigenic cells and this has been touted as the source of heterogeneity observed in many solid tumors. The latter cannot be fully explained by epigenetic regulation or by the clonal evolution theory. This heterogeneity markedly influences how tumors respond to therapy and prognosis. The present expert review offers an analysis and synthesis of the latest research and concepts on CSCs, with a view to truly disruptive innovation for future diagnostics and therapeutics in clinical oncology.


Subject(s)
Medical Oncology/methods , Neoplastic Stem Cells/metabolism , Biomarkers, Tumor/metabolism , Humans , Neoplasms/metabolism , Neoplasms/pathology , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...