Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; : 1-10, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38279925

ABSTRACT

Human uracil DNA glycosylase (hUNG), a crucial player in the initiation of the base excision repair pathway, is susceptible to alterations in function and conformation induced by the accumulation of toxic metals. Despite the recognized impact of toxic metals on DNA repair enzymes, there exists a notable deficiency in theoretical investigations addressing this phenomenon. This study investigates the impact of toxic heavy metal ions, Pb(II) and Ni(II), on the stability of hUNG through molecular dynamics (MD) simulations. The initial analysis involved the identification of key cavities in the hUNG enzyme. Notably, the active site cavity emerged as a promising site for ligand binding. Subsequently, AutoDockTools software was employed to dock Pb(II) and Ni(II) onto the identified cavities, followed by extensive MD simulations. The MD analysis, encompassing parameters such as root mean square deviation, radius of gyration, solvent accessible surface area, hydrogen bond variations, Ramachandran plot, principal component analysis, and root mean square fluctuations, collectively revealed distinct alterations in the behavior of the enzyme upon complexation with Pb(II) and Ni(II). Interestingly, the enzyme exhibited enhanced structural stability, reduced flexibility, and modified hydrogen bonding patterns in the presence of these toxic metal ions. The observed limitation in structural flexibility implies a more rigid and stable conformation when the enzyme complex with Pb(II) and Ni(II) compared to its free form. This structural alteration may lead to a potential reduction in enzymatic activity, suggesting that toxic metal ions influence the functional dynamics of hUNG. These computational findings offer valuable insights into the molecular interactions between metal ions and enzymes.Communicated by Ramaswamy H. Sarma.

2.
J Biomol Struct Dyn ; 40(24): 14027-14034, 2022.
Article in English | MEDLINE | ID: mdl-34738875

ABSTRACT

Uracil DNA glycosylase is a key enzyme that identifies and removes damaged bases from DNA in the base excision repair pathway. Experimentalists have identified the possibility of Cd(II) reducing the activity of human uracil DNA glycosylase (hUNG) by binding with the enzyme replacing the catalytic water molecule. The present study focus on the stability variation of the enzyme in the presence and absence of Cd(II) and confirms the reported results with the stability analysis done using molecular dynamic (MD) simulation trajectories. The CavityPlus web server identified seven cavities for the free enzyme as possible binding sites and a cavity containing the active site of the enzyme as the best binding cavity for a ligand. Based on the CavityPlus results and the previously reported work, a free hUNG system and two systems of the enzyme with Cd(II); one with Cd(II) replacing the catalytic water molecule in the active site of the enzyme and the other replacing a non-catalytic water molecule in the active site were generated for the simulation. The simulation trajectories were used for the structural stability analysis of the enzyme in all three systems. The binding free energy of the Cd(II) with the enzyme was calculated using molecular mechanics Poisson Boltzmann surface area method. The results showed that the enzyme achieves comparatively high stability with the removal of catalytic water of the enzyme by Cd(II). Therefore, this supports the previously reported idea that Cd(II) replaces catalytic water molecules and affects enzyme activity.


Subject(s)
Molecular Dynamics Simulation , Uracil-DNA Glycosidase , Humans , Uracil-DNA Glycosidase/chemistry , Uracil-DNA Glycosidase/genetics , Uracil-DNA Glycosidase/metabolism , Cadmium , Binding Sites , DNA Repair , Water/chemistry , Uracil/metabolism
3.
Carbohydr Polym ; 267: 118136, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34119125

ABSTRACT

Cellulose and its forms are widely used in biomedical applications due to their biocompatibility, biodegradability and lack of cytotoxicity. It provides ample opportunities for the functionalization of supported magnetic nanohybrids (CSMNs). Because of the abundance of surface hydroxyl groups, they are surface tunable in either homogeneous or heterogeneous solvents and thus act as a substrate or template for the CSMNs' development. The present review emphasizes on the synthesis of various CSMNs, their physicomagnetic properties, and potential applications such as stimuli-responsive drug delivery systems, MRI, enzyme encapsulation, nucleic acid extraction, wound healing and tissue engineering. The impact of CSMNs on cytotoxicity, magnetic hyperthermia, and folate-conjugates is highlighted in particular, based on their structures, cell viability, and stability. Finally, the review also discussed the challenges and prospects of CSMNs' development. This review is expected to provide CSMNs' development roadmap in the context of 21st-century demands for biomedical therapeutics.


Subject(s)
Cellulose/chemistry , Magnetite Nanoparticles/chemistry , Animals , Drug Carriers/chemistry , Enzymes, Immobilized/chemistry , Humans , Magnetic Phenomena , Magnetic Resonance Imaging , Nucleic Acids/isolation & purification , Smart Materials/chemistry , Solid Phase Extraction/methods , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL
...