Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 88(8): e0020722, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35389251

ABSTRACT

Partitioning systems ensure the stable inheritance of bacterial low-copy-number replicons, such as chromosomes, chromids, and megaplasmids. These loci consist of two genes encoding partition proteins A and B, and at least one parS centromere-like sequence. In chromids and megaplasmids, partitioning systems are often located in the vicinity of replication systems. An extreme example of this co-localization are alphaproteobacterial repABC replicons, where the partition (repAB) and replication (repC) genes form a single operon, with parS sequences usually positioned in close proximity to these genes. In this study, we characterized a more complex repABC system found in Paracoccus aminophilus (Rhodobacterales) megaplasmid pAMI4 (438 kb). Besides the repABC operon with a single parS site, this replicon has a 2-kb non-coding locus positioned 11.5 kb downstream of repC, which contains three additional parS repeats (3parS). We demonstrated that 3parS is bound by partition protein B in vitro and is essential for proper pAMI4 partitioning in vivo. In search of similar loci, we conducted a comparative analysis of parS distribution in other repABC replicons. This revealed different patterns of parS localization in Rhodobacterales and Rhizobiales. However, in both these taxonomic orders, parS sites are almost always located inside or close to the repABC operon. No other 3parS-like loci were found in the closest relatives of pAMI4. Another evolutionarily-independent example of such a locus was identified as a conserved feature in chromosome 2 of Allorhizobium vitis and related replicons. IMPORTANCE The repABC replication/partitioning loci are widespread in extrachromosomal replicons of Alphaproteobacteria. They are evolutionarily diverse, subject to multi-layer self-regulation, and are responsible for the maintenance of different types of replicons, such as plasmids (e.g., Agrobacterium pTi and pRi tumorigenic and rhizogenic plasmids), megaplasmids (e.g., Sinorhizobium pSymA and pSymB) and essential chromids (e.g., secondary chromosomes of Agrobacterium, Brucella and Rhodobacter). In this study, we functionally analyzed an atypical partition-related component of repABC systems, the 3parS locus, found in the P. aminophilus megaplasmid pAMI4. We also identified parS centromere-like site distribution patterns in different groups of repABC replicons and found other unrelated 3parS-like loci, which had been overlooked. Our findings raise questions concerning the biological reasons for differential parS distribution, which may reflect variations in repABC operon regulation as well as different replication and partition modes of replicons belonging to the repABC family.


Subject(s)
Alphaproteobacteria , Alphaproteobacteria/genetics , Alphaproteobacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Centromere/genetics , Plasmids/genetics , Replicon
2.
Front Microbiol ; 9: 2553, 2018.
Article in English | MEDLINE | ID: mdl-30410477

ABSTRACT

Bacteria of the genus Paracoccus are common components of the microbiomes of many naturally- and anthropogenically shaped environments. One species, Paracoccus yeei, is unique within the genus because it is associated with opportunistic human infections. Therefore, strains of P. yeei may serve as an interesting model to study the transition from a saprophytic to a pathogenic lifestyle in environmental bacteria. Unfortunately, knowledge concerning the biology, genetics and genomic content of P. yeei is fragmentary; also the mechanisms of pathogenicity of this bacterium remain unclear. In this study we provide the first insight into the genome composition and metabolic potential of a clinical isolate, P. yeei CCUG 32053. This strain has a multipartite genome (4,632,079 bp) composed of a circular chromosome plus eight extrachromosomal replicons pYEE1-8: 3 chromids and 5 plasmids, with a total size of 1,247,173 bp. The genome has been significantly shaped by the acquisition of genomic islands, prophages (Myoviridae and Siphoviridae phage families) and numerous insertion sequences (ISs) representing seven IS families. Detailed comparative analysis with other complete genomic sequences of Paracoccus spp. (including P. yeei FDAARGOS_252 and TT13, as well as non-pathogenic strains of other species in this genus) enabled us to identify P. yeei species-specific genes and to predict putative determinants of virulence. This is the first attempt to identify pathoadaptive genetic information of P. yeei and to estimate the role of the mobilome in the evolution of pathogenicity in this species.

SELECTION OF CITATIONS
SEARCH DETAIL
...