Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 131(6): 065102, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37625047

ABSTRACT

We discovered a simple regime where a near-critical plasma irradiated by a laser of experimentally available intensity can self-organize to produce positrons and accelerate them to ultrarelativistic energies. The laser pulse piles up electrons at its leading edge, producing a strong longitudinal plasma electric field. The field creates a moving gamma-ray collider that generates positrons via the linear Breit-Wheeler process-annihilation of two gamma rays into an electron-positron pair. At the same time, the plasma field, rather than the laser, serves as an accelerator for the positrons. The discovery of positron acceleration was enabled by a first-of-its-kind kinetic simulation that generates pairs via photon-photon collisions. Using available laser intensities of 10^{22} W/cm^{2}, the discovered regime can generate a GeV positron beam with a divergence angle of around 10° and a total charge of 0.1 pC. The result paves the way to experimental observation of the linear Breit-Wheeler process and to applications requiring positron beams.

2.
Rev Sci Instrum ; 94(3): 033511, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-37012804

ABSTRACT

High-power, short-pulse laser-driven fast electrons can rapidly heat and ionize a high-density target before it hydrodynamically expands. The transport of such electrons within a solid target has been studied using two-dimensional (2D) imaging of electron-induced Kα radiation. However, it is currently limited to no or picosecond scale temporal resolutions. Here, we demonstrate femtosecond time-resolved 2D imaging of fast electron transport in a solid copper foil using the SACLA x-ray free electron laser (XFEL). An unfocused collimated x-ray beam produced transmission images with sub-micron and ∼10 fs resolutions. The XFEL beam, tuned to its photon energy slightly above the Cu K-edge, enabled 2D imaging of transmission changes induced by electron isochoric heating. Time-resolved measurements obtained by varying the time delay between the x-ray probe and the optical laser show that the signature of the electron-heated region expands at ∼25% of the speed of light in a picosecond duration. Time-integrated Cu Kα images support the electron energy and propagation distance observed with the transmission imaging. The x-ray near-edge transmission imaging with a tunable XFEL beam could be broadly applicable for imaging isochorically heated targets by laser-driven relativistic electrons, energetic protons, or an intense x-ray beam.

3.
Sci Rep ; 12(1): 6876, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35477961

ABSTRACT

High energy density physics is the field of physics dedicated to the study of matter and plasmas in extreme conditions of temperature, densities and pressures. It encompasses multiple disciplines such as material science, planetary science, laboratory and astrophysical plasma science. For the latter, high energy density states can be accompanied by extreme radiation environments and super-strong magnetic fields. The creation of high energy density states in the laboratory consists in concentrating/depositing large amounts of energy in a reduced mass, typically solid material sample or dense plasma, over a time shorter than the typical timescales of heat conduction and hydrodynamic expansion. Laser-generated, high current-density ion beams constitute an important tool for the creation of high energy density states in the laboratory. Focusing plasma devices, such as cone-targets are necessary in order to focus and direct these intense beams towards the heating sample or dense plasma, while protecting the proton generation foil from the harsh environments typical of an integrated high-power laser experiment. A full understanding of the ion beam dynamics in focusing devices is therefore necessary in order to properly design and interpret the numerous experiments in the field. In this work, we report a detailed investigation of large-scale, kilojoule-class laser-generated ion beam dynamics in focusing devices and we demonstrate that high-brilliance ion beams compress magnetic fields to amplitudes exceeding tens of kilo-Tesla, which in turn play a dominant role in the focusing process, resulting either in a worsening or enhancement of focusing capabilities depending on the target geometry.

4.
Rev Sci Instrum ; 92(1): 013510, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33514225

ABSTRACT

In pump-probe experiments with an X-ray Free Electron Laser (XFEL) and a high-power optical laser, spatial overlap of the two beams must be ensured to probe a pumped area with the x-ray beam. A beam monitoring diagnostic is particularly important in short-pulse laser experiments where a tightly focused beam is required to achieve a relativistic laser intensity for generation of energetic particles. Here, we report the demonstration of on-shot beam pointing measurements of an XFEL and a terawatt class femtosecond laser using 2D monochromatic Kα imaging at the Matter in Extreme Conditions end-station of the Linac Coherent Light Source. A thin solid titanium foil was irradiated by a 25-TW laser for fast electron isochoric heating, while a 7.0 keV XFEL beam was used to probe the laser-heated region. Using a spherical crystal imager (SCI), the beam overlap was examined by measuring 4.51 keV Kα x rays produced by laser-accelerated fast electrons and the x-ray beam. Measurements were made for XFEL-only at various focus lens positions, laser-only, and two-beam shots. Successful beam overlapping was observed on ∼58% of all two-beam shots for 10 µm thick samples. It is found that large spatial offsets of laser-induced Kα spots are attributed to imprecise target positioning rather than shot-to-shot laser pointing variations. By applying the Kα measurements to x-ray Thomson scattering measurements, we found an optimum x-ray beam spot size that maximizes scattering signals. Monochromatic x-ray imaging with the SCI could be used as an on-shot beam pointing monitor for XFEL-laser or multiple short-pulse laser experiments.

5.
Phys Rev E ; 102(3-1): 033202, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33075864

ABSTRACT

Magnetic reconnection in a relativistic electron magnetization regime was observed in a laboratory plasma produced by a high-intensity, large energy, picoseconds laser pulse. Magnetic reconnection conditions realized with a laser-driven several kilotesla magnetic field is comparable to that in the accretion disk corona of black hole systems, i.e., Cygnus X-1. We observed particle energy distributions of reconnection outflow jets, which possess a power-law component in a high-energy range. The hardness of the observed spectra could explain the hard-state x-ray emission from accreting black hole systems.

6.
Phys Rev Lett ; 124(8): 084802, 2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32167312

ABSTRACT

Acceleration of particles from the interaction of ultraintense laser pulses up to 5×10^{21} W cm^{-2} with thin foils is investigated experimentally. The electron beam parameters varied with decreasing spot size, not just laser intensity, resulting in reduced temperatures and divergence. In particular, the temperature saturated due to insufficient acceleration length in the tightly focused spot. These dependencies affected the sheath-accelerated protons, which showed poorer spot-size scaling than widely used scaling laws. It is therefore shown that maximizing laser intensity by using very small foci has reducing returns for some applications.

7.
Nat Commun ; 10(1): 2995, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-31278266

ABSTRACT

Increasing the laser energy absorption into energetic particle beams represents a longstanding quest in intense laser-plasma physics. During the interaction with matter, part of the laser energy is converted into relativistic electron beams, which are the origin of secondary sources of energetic ions, γ-rays and neutrons. Here we experimentally demonstrate that using multiple coherent laser beamlets spatially and temporally overlapped, thus producing an interference pattern in the laser focus, significantly improves the laser energy conversion efficiency into hot electrons, compared to one beam with the same energy and nominal intensity as the four beamlets combined. Two-dimensional particle-in-cell simulations support the experimental results, suggesting that beamlet interference pattern induces a periodical shaping of the critical density, ultimately playing a key-role in enhancing the laser-to-electron energy conversion efficiency. This method is rather insensitive to laser pulse contrast and duration, making this approach robust and suitable to many existing facilities.

8.
Phys Rev Lett ; 122(15): 155002, 2019 Apr 19.
Article in English | MEDLINE | ID: mdl-31050520

ABSTRACT

The rapid heating of a thin titanium foil by a high intensity, subpicosecond laser is studied by using a 2D narrow-band x-ray imaging and x-ray spectroscopy. A novel monochromatic imaging diagnostic tuned to 4.51 keV Ti Kα was used to successfully visualize a significantly ionized area (⟨Z⟩>17±1) of the solid density plasma to be within a ∼35 µm diameter spot in the transverse direction and 2 µm in depth. The measurements and a 2D collisional particle-in-cell simulation reveal that, in the fast isochoric heating of solid foil by an intense laser light, such a high ionization state in solid titanium is achieved by thermal diffusion from the hot preplasma in a few picoseconds after the pulse ends. The shift of Kα and formation of a missing Kα cannot be explained with the present atomic physics model. The measured Kα image is reproduced only when a phenomenological model for the Kα shift with a threshold ionization of ⟨Z⟩=17 is included. This work reveals how the ionization state and electron temperature of the isochorically heated nonequilibrium plasma are independently increased.

9.
Nat Commun ; 9(1): 280, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29348402

ABSTRACT

High-intensity lasers interacting with solid foils produce copious numbers of relativistic electrons, which in turn create strong sheath electric fields around the target. The proton beams accelerated in such fields have remarkable properties, enabling ultrafast radiography of plasma phenomena or isochoric heating of dense materials. In view of longer-term multidisciplinary purposes (e.g., spallation neutron sources or cancer therapy), the current challenge is to achieve proton energies well in excess of 100 MeV, which is commonly thought to be possible by raising the on-target laser intensity. Here we present experimental and numerical results demonstrating that magnetostatic fields self-generated on the target surface may pose a fundamental limit to sheath-driven ion acceleration for high enough laser intensities. Those fields can be strong enough (~105 T at laser intensities ~1021 W cm-2) to magnetize the sheath electrons and deflect protons off the accelerating region, hence degrading the maximum energy the latter can acquire.

10.
Phys Rev E ; 95(6-1): 063203, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28709226

ABSTRACT

Solid-density plasmas driven by intense x-ray free-electron laser (XFEL) radiation are seeded by sources of nonthermal photoelectrons and Auger electrons that ionize and heat the target via collisions. Simulation codes that are commonly used to model such plasmas, such as collisional-radiative (CR) codes, typically assume a Maxwellian distribution and thus instantaneous thermalization of the source electrons. In this study, we present a detailed description and initial applications of a collisional particle-in-cell code, picls, that has been extended with a self-consistent radiation transport model and Monte Carlo models for photoionization and KLL Auger ionization, enabling the fully kinetic simulation of XFEL-driven plasmas. The code is used to simulate two experiments previously performed at the Linac Coherent Light Source investigating XFEL-driven solid-density Al plasmas. It is shown that picls-simulated pulse transmissions using the Ecker-Kröll continuum-lowering model agree much better with measurements than do simulations using the Stewart-Pyatt model. Good quantitative agreement is also found between the time-dependent picls results and those of analogous simulations by the CR code scfly, which was used in the analysis of the experiments to accurately reproduce the observed Kα emissions and pulse transmissions. Finally, it is shown that the effects of the nonthermal electrons are negligible for the conditions of the particular experiments under investigation.

11.
Sci Rep ; 7: 42451, 2017 02 13.
Article in English | MEDLINE | ID: mdl-28211913

ABSTRACT

Using one of the world most powerful laser facility, we demonstrate for the first time that high-contrast multi-picosecond pulses are advantageous for proton acceleration. By extending the pulse duration from 1.5 to 6 ps with fixed laser intensity of 1018 W cm-2, the maximum proton energy is improved more than twice (from 13 to 33 MeV). At the same time, laser-energy conversion efficiency into the MeV protons is enhanced with an order of magnitude, achieving 5% for protons above 6 MeV with the 6 ps pulse duration. The proton energies observed are discussed using a plasma expansion model newly developed that takes the electron temperature evolution beyond the ponderomotive energy in the over picoseconds interaction into account. The present results are quite encouraging for realizing ion-driven fast ignition and novel ion beamlines.

12.
Phys Rev Lett ; 117(5): 055001, 2016 Jul 29.
Article in English | MEDLINE | ID: mdl-27517775

ABSTRACT

A tailored-pulse-imploded core with a diameter of 70 µm is flashed by counterirradiating 110 fs, 7 TW laser pulses. Photon emission (>40 eV) from the core exceeds the emission from the imploded core by 6 times, even though the heating pulse energies are only one seventh of the implosion energy. The coupling efficiency from the heating laser to the core using counterirradiation is 14% from the enhancement of photon emission. Neutrons are also produced by counterpropagating fast deuterons accelerated by the photon pressure of the heating pulses. A collisional two-dimensional particle-in-cell simulation reveals that the collisionless two counterpropagating fast-electron currents induce mega-Gauss magnetic filaments in the center of the core due to the Weibel instability. The counterpropagating fast-electron currents are absolutely unstable and independent of the core density and resistivity. Fast electrons with energy below a few MeV are trapped by these filaments in the core region, inducing an additional coupling. This might lead to the observed bright photon emissions.

13.
14.
Phys Rev Lett ; 114(21): 215001, 2015 May 29.
Article in English | MEDLINE | ID: mdl-26066440

ABSTRACT

We report new experimental results obtained on three different laser facilities that show directed laser-driven relativistic electron-positron jets with up to 30 times larger yields than previously obtained and a quadratic (∼E_{L}^{2}) dependence of the positron yield on the laser energy. This favorable scaling stems from a combination of higher energy electrons due to increased laser intensity and the recirculation of MeV electrons in the mm-thick target. Based on this scaling, first principles simulations predict the possibility of using such electron-positron jets, produced at upcoming high-energy laser facilities, to probe the physics of relativistic collisionless shocks in the laboratory.

15.
Rev Sci Instrum ; 86(4): 043502, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25933857

ABSTRACT

Ultra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g., proton-therapy or fuel recycling) and fundamental (e.g., neutron probing) domains. However, this requires overcoming the beam angular divergence at the source. This has been attempted, either with large-scale conventional setups or with compact plasma techniques that however have the restriction of short (<1 mm) focusing distances or a chromatic behavior. Here, we show that exploiting laser-triggered, long-lasting (>50 ps), thermoelectric multi-megagauss surface magnetic (B)-fields, compact capturing, and focusing of a diverging laser-driven multi-MeV ion beam can be achieved over a wide range of ion energies in the limit of a 5° acceptance angle.

16.
Phys Rev Lett ; 114(19): 195002, 2015 May 15.
Article in English | MEDLINE | ID: mdl-26024175

ABSTRACT

A novel direct core heating fusion process is introduced, in which a preimploded core is predominantly heated by energetic ions driven by LFEX, an extremely energetic ultrashort pulse laser. Consequently, we have observed the D(d,n)^{3}He-reacted neutrons (DD beam-fusion neutrons) with the yield of 5×10^{8} n/4π sr. Examination of the beam-fusion neutrons verified that the ions directly collide with the core plasma. While the hot electrons heat the whole core volume, the energetic ions deposit their energies locally in the core, forming hot spots for fuel ignition. As evidenced in the spectrum, the process simultaneously excited thermal neutrons with the yield of 6×10^{7} n/4π sr, raising the local core temperature from 0.8 to 1.8 keV. A one-dimensional hydrocode STAR 1D explains the shell implosion dynamics including the beam fusion and thermal fusion initiated by fast deuterons and carbon ions. A two-dimensional collisional particle-in-cell code predicts the core heating due to resistive processes driven by hot electrons, and also the generation of fast ions, which could be an additional heating source when they reach the core. Since the core density is limited to 2 g/cm^{3} in the current experiment, neither hot electrons nor fast ions can efficiently deposit their energy and the neutron yield remains low. In future work, we will achieve the higher core density (>10 g/cm^{3}); then hot electrons could contribute more to the core heating via drag heating. Together with hot electrons, the ion contribution to fast ignition is indispensable for realizing high-gain fusion. By virtue of its core heating and ignition, the proposed scheme can potentially achieve high gain fusion.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 90(5-1): 051102, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25493733

ABSTRACT

The x-ray laser-matter interaction for a low-Z material, carbon, is studied with a particle-in-cell code that solves the photoionization and x-ray transport self-consistently. Photoionization is the dominant absorption mechanism and nonthermal photoelectrons are produced with energy near the x-ray photon energy. The photoelectrons ionize the target rapidly via collisional impact ionization and field ionization, producing a hot plasma column behind the laser pulse. The radial size of the heated region becomes larger than the laser spot size due to the kinetic nature of the photoelectrons. The plasma can have a temperature of more than 10 000 K (>1eV), an energy density greater than 10^{4} J/cm^{3}, an ion-ion Coulomb coupling parameter Γ≥1, and electron degeneracy Θ≥1, i.e., strongly coupled warm dense matter. By increasing the laser intensity, the plasma temperature rises nonlinearly from tens of eV to hundreds of eV, bringing it into the high energy density matter regime. The heating depth and temperature are also controllable by changing the photon energy of the incident laser light.

18.
Article in English | MEDLINE | ID: mdl-25353588

ABSTRACT

The resistive magnetic field plays a crucial role in determining the laser produced fast-electron transport in solid targets. The scaling of the resistive guiding is derived and benchmarked against two-dimensional collisional particle-in-cell simulations. We study the impact of the initial state of the material (Z dependence, conductor, or insulator) on global electron-transport patterns, and conclude that the initial state of a conductor or insulator is not important. Instead, global transport patterns depend on the material Z. The fast-electron transport seen in the simulations is consistent with the derived scaling rule. Previous experimental observations [e.g., R. B. Stephens et al., Phys. Rev. E 69, 066414 (2004) and Y. Sentoku et al., Phys. Rev. Lett. 107, 135005 (2011)] that show confinement or divergence in various regimes are also explained by our scaling. The presented scaling then becomes a useful tool to design compact radiation sources or fast ignitor experiments.


Subject(s)
Electrons , Lasers , Models, Chemical , Plasma Gases/chemistry , Plasma Gases/radiation effects , Computer Simulation , Electric Conductivity , Magnetic Fields
19.
Phys Rev Lett ; 110(2): 025001, 2013 Jan 11.
Article in English | MEDLINE | ID: mdl-23383907

ABSTRACT

The effect of target material on fast-electron transport is investigated using a high-intensity (0.7 ps, 10(20) W/cm2) laser pulse irradiated on multilayered solid Al targets with embedded transport (Au, Mo, Al) and tracer (Cu) layers, backed with millimeter-thick carbon foils to minimize refluxing. We consistently observed a more collimated electron beam (36% average reduction in fast-electron induced Cu Kα spot size) using a high- or mid-Z (Au or Mo) layer compared to Al. All targets showed a similar electron flux level in the central spot of the beam. Two-dimensional collisional particle-in-cell simulations showed formation of strong self-generated resistive magnetic fields in targets with a high-Z transport layer that suppressed the fast-electron beam divergence; the consequent magnetic channels guided the fast electrons to a smaller spot, in good agreement with experiments. These findings indicate that fast-electron transport can be controlled by self-generated resistive magnetic fields and may have important implications to fast ignition.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(3 Pt 2): 036412, 2012 Sep.
Article in English | MEDLINE | ID: mdl-23031038

ABSTRACT

Laser probe diagnostics: shadowgraphy, interferometry, and polarimetry were used for a comprehensive characterization of ionization wave dynamics inside a glass target induced by a laser-driven, relativistic electron beam. Experiments were done using the 50-TW Leopard laser at the University of Nevada, Reno. We show that for a laser flux of ∼2 × 10(18) W/cm2 a hemispherical ionization wave propagates at c/3 for 10 ps and has a smooth electron-density distribution. The maximum free-electron density inside the glass target is ∼2 × 10(19) cm-3, which corresponds to an ionization level of ∼0.1%. Magnetic fields and electric fields do not exceed ∼15 kG and ∼1 MV/cm, respectively. The electron temperature has a hot, ringlike structure with a maximum of ∼0.7 eV. The topology of the interference phase shift shows the signature of the "fountain effect", a narrow electron beam that fans out from the propagation axis and heads back to the target surface. Two-dimensional particle-in-cell (PIC) computer simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields driven by laser. The very low ionization observed after the laser heating pulse suggests a fast recombination on the sub-ps time scale.


Subject(s)
Electrons , Glass/chemistry , Glass/radiation effects , Lasers , Models, Theoretical , Computer Simulation , Electric Conductivity , Light , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...