Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(18)2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37762596

ABSTRACT

Mitochondria are crucial for cellular energy metabolism and are involved in signaling, aging, and cell death. They undergo dynamic changes through fusion and fission to adapt to different cellular states. In this study, we investigated the effect of knocking out the dynamin 1-like protein (Dnm1l) gene, a key regulator of mitochondrial fission, in neural stem cells (NSCs) differentiated from Dnm1l knockout embryonic stem cells (Dnm1l-/- ESCs). Dnm1l-/- ESC-derived NSCs (Dnm1l-/- NSCs) exhibited similar morphology and NSC marker expression (Sox2, Nestin, and Pax6) to brain-derived NSCs, but lower Nestin and Pax6 expression than both wild-type ESC-derived NSCs (WT-NSCs) and brain-derived NSCs. In addition, compared with WT-NSCs, Dnm1l-/- NSCs exhibited distinct mitochondrial morphology and function, contained more elongated mitochondria, showed reduced mitochondrial respiratory capacity, and showed a metabolic shift toward glycolysis for ATP production. Notably, Dnm1l-/- NSCs exhibited impaired self-renewal ability and accelerated cellular aging during prolonged culture, resulting in decreased proliferation and cell death. Furthermore, Dnm1l-/- NSCs showed elevated levels of inflammation and cell stress markers, suggesting a connection between Dnm1l deficiency and premature aging in NSCs. Therefore, the compromised self-renewal ability and accelerated cellular aging of Dnm1l-/- NSCs may be attributed to mitochondrial fission defects.


Subject(s)
Cellular Senescence , Mitochondria , Nestin , Mitochondria/genetics , Embryonic Stem Cells
2.
Cell Mol Life Sci ; 80(10): 302, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37747543

ABSTRACT

Mitochondria are versatile organelles that continuously change their morphology via fission and fusion. However, the detailed functions of mitochondrial dynamics-related genes in pluripotent stem cells remain largely unclear. Here, we aimed to determine the effects on energy metabolism and differentiation ability of mouse embryonic stem cells (ESCs) following deletion of the mitochondrial fission-related gene Dnml1. Resultant Dnm1l-/- ESCs maintained major pluripotency characteristics. However, Dnm1l-/- ESCs showed several phenotypic changes, including the inhibition of differentiation ability (dissolution of pluripotency). Notably, Dnm1l-/- ESCs maintained the expression of the pluripotency marker Oct4 and undifferentiated colony types upon differentiation induction. RNA sequencing analysis revealed that the most frequently differentially expressed genes were enriched in the glutathione metabolic pathway. Our data suggested that differentiation inhibition of Dnm1l-/- ESCs was primarily due to metabolic shift from glycolysis to OXPHOS, G2/M phase retardation, and high level of Nanog and 2-cell-specific gene expression.


Subject(s)
Cell Cycle , Dynamins , Glycolysis , Mouse Embryonic Stem Cells , Pluripotent Stem Cells , Animals , Mice , Cell Differentiation/genetics , Cell Division , Mouse Embryonic Stem Cells/metabolism , Pluripotent Stem Cells/metabolism , Dynamins/genetics , Dynamins/physiology , Gene Deletion , Glycolysis/genetics
3.
Int J Stem Cells ; 16(1): 44-51, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36310027

ABSTRACT

Background and Objectives: DNA methyltransferases (Dnmts) play an important role in regulating DNA methylation during early developmental processes and cellular differentiation. In this study, we aimed to investigate the role of Dnmts in neural differentiation of embryonic stem cells (ESCs) and in maintenance of the resulting neural stem cells (NSCs). Methods and Results: We used three types of Dnmt knockout (KO) ESCs, including Dnmt1 KO, Dnmt3a/3b double KO (Dnmt3 DKO), and Dnmt1/3a/3b triple KO (Dnmt TKO), to investigate the role of Dnmts in neural differentiation of ESCs. All three types of Dnmt KO ESCs could form neural rosette and differentiate into NSCs in vitro. Interestingly, however, after passage three, Dnmt KO ESC-derived NSCs could not maintain their self-renewal and differentiated into neurons and glial cells. Conclusions: Taken together, the data suggested that, although deficiency of Dnmts had no effect on the differentiation of ESCs into NSCs, the latter had defective maintenance, thereby indicating that Dnmts are crucial for self-renewal of NSCs.

4.
Stem Cells Dev ; 2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32867608

ABSTRACT

The endometrial cycle in response to hormonal stimulation is essential for implantation. The female has endometrium that repeats this cycle through about half of a lifetime. The cycle includes three phases, proliferative, secretory, and menstrual, and each phase has distinct characteristics. The endometrial stromal cells (EnSCs) in each phase also have specialized characteristics, including cell cycle, morphologies, and cellular metabolic state. So we hypothesized that the cells in each phase have unique mitochondrial morphologies because they are generally linked to cellular metabolic state. To investigate the metabolic characteristics in each phase, we investigated the mitochondrial morphologies by transmission electron microscopy, oxygen consumption rate (OCR), and intracellular adenosine triphosphate (ATP) production. The decidualized EnSCs have shorter mitochondria than those in the proliferative phase. Besides, they also displayed distinct intracellular structural characteristics compared with the proliferative phase, such as ribosome-rich endoplasmic reticulum and increased formation of vesicles. OCR and luminescent ATP detection assay revealed that the basal respiration and ATP production in the decidualized EnSCs were lower than those in the proliferative phase. Thus, we concluded that morphological and intracellular structural changes were induced during the decidualization. Moreover, the decreased mitochondrial length was shown to correlate with decreased dependency on oxidative phosphorylation and ATP concentration in EnSCs.

5.
Redox Biol ; 36: 101599, 2020 09.
Article in English | MEDLINE | ID: mdl-32521505

ABSTRACT

Mitochondria, the major organelles that produce energy for cell survival and function, dynamically change their morphology via fusion and fission, a process called mitochondrial dynamics. The details of the underlying mechanism of mitochondrial dynamics have not yet been elucidated. Here, we aimed to investigate the function of mitochondrial fission genes in embryonic stem cells (ESCs). To this end, we generated homozygous knockout ESC lines, namely, Fis1-/-, Mff-/-, and Dnm1l-/- ESCs, using the CRISPR-Cas9 system. Interestingly, the Fis1-/-, Mff-/-, and Dnm1l-/- ESCs showed normal morphology, self-renewal, and the ability to differentiate into all three germ layers in vitro. However, transmission electron microscopy showed a significant increase in the cytoplasm to nucleus ratio and mitochondrial elongation in Dnm1l-/- ESCs, which was due to incomplete fission. To assess the change in metabolic energy, we analyzed oxidative phosphorylation (OXPHOS), glycolysis, and the intracellular ATP concentration. The ESC knockout lines showed an increase in OXPHOS, decrease in glycolysis, and an increase in intracellular ATP concentration, which was related to mitochondrial elongation. In particular, the Dnm1l knockout most significantly affected mitochondrial morphology, energy metabolism, and ATP production in ESCs. Furthermore, RNA sequencing and gene ontology analysis showed that the differentially expressed genes in Mff-/- ESCs were distinct from those in Dnm1l-/- or Fis1-/- ESCs. In total, five metabolism-related genes, namely, Aass, Cdo1, Cyp2b23, Nt5e, and Pck2, were expressed in all three knockout ESC lines, and three of them were associated with regulation of ATP generation.


Subject(s)
Mitochondrial Dynamics , Mouse Embryonic Stem Cells , Animals , Dynamins/metabolism , Energy Metabolism/genetics , Mice , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mouse Embryonic Stem Cells/metabolism , Oxidative Phosphorylation
6.
Stem Cells Int ; 2020: 9369268, 2020.
Article in English | MEDLINE | ID: mdl-32399055

ABSTRACT

During embryonic development, cells undergo changes in gene expression, signaling pathway activation/inactivation, metabolism, and intracellular organelle structures, which are mediated by mitochondria. Mitochondria continuously switch their morphology between elongated tubular and fragmented globular via mitochondrial fusion and fission. Mitochondrial fusion is mediated by proteins encoded by Mfn1, Mfn2, and Opa1, whereas mitochondrial fission is mediated by proteins encoded by Fis1 and Dnm1L. Here, we investigated the expression patterns of mitochondria-related genes during the differentiation of mouse embryonic stem cells (ESCs). Pluripotent ESCs maintain stemness in the presence of leukemia inhibitory factor (LIF) via the JAK-STAT3 pathway but lose pluripotency and differentiate in response to the withdrawal of LIF. We analyzed the expression levels of mitochondrial fusion- and fission-related genes during the differentiation of ESCs. We hypothesized that mitochondrial fusion genes would be overexpressed while the fission genes would be downregulated during the differentiation of ESCs. Though the mitochondria exhibited an elongated morphology in ESCs differentiating in response to LIF withdrawal, only the expression of Mfn2 was increased and that of Dnm1L was decreased as expected, the other exceptions being Mfn1, Opa1, and Fis1. Next, by comparing gene expression and mitochondrial morphology, we proposed an index that could precisely represent mitochondrial changes during the differentiation of pluripotent stem cells by analyzing the expression ratios of three fusion- and two fission-related genes. Surprisingly, increased Mfn2/Dnm1L ratio was correlated with elongation of mitochondria during the differentiation of ESCs. Moreover, application of this index to other specialized cell types revealed that neural stems cells (NSCs) and mouse embryonic fibroblasts (MEFs) showed increased Mfn2/Dnm1L ratio compared to ESCs. Thus, we suggest that the Mfn2/Dnm1L ratio could reflect changes in mitochondrial morphology according to the extent of differentiation.

7.
Redox Biol ; 30: 101437, 2020 02.
Article in English | MEDLINE | ID: mdl-31981893

ABSTRACT

Pre-implantation mouse blastocyst-derived stem cells, namely embryonic stem cells (ESCs), trophoblast stem cells (TSCs), and extraembryonic endoderm (XEN) cells, have their own characteristics and lineage specificity. So far, several studies have attempted to identify these three stem cell types based on genetic markers, morphologies, and factors involved in maintaining cell self-renewal. In this study, we focused on characterizing the three stem cell types derived from mouse blastocysts by observing cellular organelles, especially the mitochondria, and analyzing how mitochondrial dynamics relates to the energy metabolism in each cell type. Our study revealed that XEN cells have distinct mitochondrial morphology and energy metabolism compared with that in ESCs and TSCs. In addition, by analyzing the energy metabolism (oxygen consumption and extracellular acidification rates), we demonstrated that differences in the mitochondria affect the cellular metabolism in the stem cells. RNA sequencing analysis showed that although ESCs are developmentally closer to XEN cells in origin, their gene expression pattern is relatively closer to that of TSCs. Notably, mitochondria-, mitochondrial metabolism-, transport/secretory action-associated genes were differentially expressed in XEN cells compared with that in ESCs and TSCs, and this feature corresponds with the morphology of the cells.


Subject(s)
Blastocyst/cytology , Embryonic Stem Cells/cytology , Endoderm/cytology , Gene Regulatory Networks , Mitochondria/metabolism , Trophoblasts/cytology , Animals , Blastocyst/metabolism , Cells, Cultured , Embryonic Stem Cells/metabolism , Endoderm/metabolism , Energy Metabolism , Gene Expression Profiling , Gene Expression Regulation , Mice , Mitochondria/genetics , Mitochondrial Dynamics , Sequence Analysis, RNA , Trophoblasts/metabolism
8.
Int J Mol Sci ; 20(21)2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31683583

ABSTRACT

Pluripotent stem cells can be established from parthenogenetic embryos, which only possess maternal alleles with maternal-specific imprinting patterns. Previously, we and others showed that parthenogenetic embryonic stem cells (pESCs) and parthenogenetic induced pluripotent stem cells (piPSCs) progressively lose the bimaternal imprinting patterns. As ESCs and iPSCs are naïve pluripotent stem cells, parthenogenetic primed pluripotent stem cells have not yet been established, and thus, their imprinting patterns have not been studied. Here, we first established parthenogenetic epiblast stem cells (pEpiSCs) from 7.5 dpc parthenogenetic implantation embryos and compared the expression patterns and DNA methylation status of the representative imprinted genes with biparental EpiSCs. We found that there were no striking differences between pEpiSCs and biparental EpiSCs with respect to morphology, pluripotency gene expression, and differentiation potential, but there were differences in the expression and DNA methylation status of imprinted genes (H19, Igf2, Peg1, and Peg3). Moreover, pEpiSCs displayed a different DNA methylation pattern compared with that of parthenogenetic neural stem cells (pNSCs), which showed a typical bimaternal imprinting pattern. These results suggest that both naïve pluripotent stem cells and primed pluripotent stem cells have an unstable imprinting status.


Subject(s)
Embryonic Stem Cells/metabolism , Genomic Imprinting/genetics , Germ Layers/metabolism , Induced Pluripotent Stem Cells/metabolism , Parthenogenesis/genetics , Pluripotent Stem Cells/metabolism , Animals , Cell Differentiation/genetics , Cells, Cultured , DNA Methylation , Embryonic Stem Cells/cytology , Female , Gene Expression Profiling , Gene Expression Regulation, Developmental , Germ Layers/cytology , Induced Pluripotent Stem Cells/cytology , Insulin-Like Growth Factor II/genetics , Mice , Pluripotent Stem Cells/cytology , RNA, Long Noncoding/genetics
9.
Int J Mol Sci ; 19(12)2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30563106

ABSTRACT

Mitochondria are highly dynamic organelles that continuously change their shape. Their main function is adenosine triphosphate (ATP) production; however, they are additionally involved in a variety of cellular phenomena, such as apoptosis, cell cycle, proliferation, differentiation, reprogramming, and aging. The change in mitochondrial morphology is closely related to the functionality of mitochondria. Normal mitochondrial dynamics are critical for cellular function, embryonic development, and tissue formation. Thus, defects in proteins involved in mitochondrial dynamics that control mitochondrial fusion and fission can affect cellular differentiation, proliferation, cellular reprogramming, and aging. Here, we review the processes and proteins involved in mitochondrial dynamics and their various associated cellular phenomena.


Subject(s)
Cell Differentiation/physiology , Mitochondria/metabolism , Mitochondrial Dynamics/physiology , Stem Cells/metabolism , Animals , Humans , Stem Cells/cytology
10.
Int J Mol Sci ; 18(3)2017 Mar 03.
Article in English | MEDLINE | ID: mdl-28273812

ABSTRACT

Recently, stem cells have been suggested as invaluable tools for cell therapy because of their self-renewal and multilineage differentiation potential. Thus, scientists have developed a variety of methods to generate pluripotent stem cells, from nuclear transfer technology to direct reprogramming using defined factors, or induced pluripotent stem cells (iPSCs). Considering the ethical issues and efficiency, iPSCs are thought to be one of the most promising stem cells for cell therapy. Induced pluripotent stem cells can be generated by transduction with a virus, plasmid, RNA, or protein. Herein, we provide an overview of the current technology for iPSC generation and describe protein-based transduction technology in detail.


Subject(s)
Cell-Penetrating Peptides/metabolism , Cellular Reprogramming , Induced Pluripotent Stem Cells/metabolism , Proteins/metabolism , Transcription Factors/metabolism , Animals , Cell Lineage , Cell Membrane Permeability , Cell Transdifferentiation , Cell-Penetrating Peptides/genetics , Cellular Reprogramming Techniques , Humans , Protein Transport , Proteins/genetics , Transcription Factors/genetics
11.
Stem Cells Dev ; 24(11): 1366-73, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25590788

ABSTRACT

Reprogramming is one of the most essential areas of research in stem cell biology. Despite this importance, the mechanism and correlates of reprogramming remain largely unknown. In this study, we investigated the cytoplasmic remodeling and changes in metabolism that occur during reprogramming and differentiation of pluripotent stem cells. Specifically, we examined the cellular organelles of three pluripotent stem cells, embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and epiblast stem cells (EpiSCs), by electron microscopy. We found that the cellular organelles of primed pluripotent EpiSCs were more similar to those of naive pluripotent ESCs and iPSCs than somatic cells. EpiSCs, as well as ESCs and iPSCs, contain large nuclei, poorly developed endoplasmic reticula, and underdeveloped cristae; however, their mitochondria were still mature relative to the mitochondria of ESCs and iPSCs. Next, we differentiated these pluripotent stem cells into neural stem cells (NSCs) in vitro and compared the morphology of organelles. We found that the morphology of organelles of NSCs differentiated from ESCs, iPSCs, and EpiSCs was indistinguishable from brain-derived NSCs. Finally, we examined the changes in energy metabolism that accompanied mitochondrial remodeling during reprogramming and differentiation. We found that the glycolytic activity of ESCs and iPSCs was greater compared with EpiSCs, and that the glycolytic activity of EpiSCs was greater compared with NSCs differentiated from ESCs, iPSCs, and EpiSCs. These results suggest that a change in the cellular state is accompanied by dynamic changes in the morphology of cytoplasmic organelles and corresponding changes in energy metabolism.


Subject(s)
Cellular Reprogramming , Embryonic Stem Cells/cytology , Induced Pluripotent Stem Cells/cytology , Mitochondria/metabolism , Neural Stem Cells/cytology , Animals , Cell Line , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/ultrastructure , Glycolysis , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/ultrastructure , Mice , Mitochondria/ultrastructure , Neural Stem Cells/metabolism , Neural Stem Cells/ultrastructure
12.
Dev Reprod ; 18(1): 1-11, 2014 Mar.
Article in English | MEDLINE | ID: mdl-25949166

ABSTRACT

Early growth response 1 (Egr1) is a zinc-finger transcription factor to direct second-wave gene expression leading to cell growth, differentiation and/or apoptosis. While it is well-known that Egr1 controls transcription of an array of targets in various cell types, downstream target gene(s) whose transcription is regulated by Egr1 in the uterus has not been identified yet. Thus, we have tried to identify a list of potential target genes of Egr1 in the uterus by performing multi-step in silico promoter analyses. Analyses of mRNA microarray data provided a cohort of genes (102 genes) which were differentially expressed (DEGs) in the uterus between Egr1(+/+) and Egr1(-/-) mice. In mice, the frequency of putative EGR1 binding sites (EBS) in the promoter of DEGs is significantly higher than that of randomly selected non-DEGs, although it is not correlated with expression levels of DEGs. Furthermore, EBS are considerably enriched within -500 bp of DEG's promoters. Comparative analyses for EBS of DEGs with the promoters of other species provided power to distinguish DEGs with higher probability as EGR1 direct target genes. Eleven EBS in the promoters of 9 genes among analyzed DEGs are conserved between various species including human. In conclusion, this study provides evidence that analyses of mRNA expression profiles followed by two-step in silico analyses could provide a list of putative Egr1 direct target genes in the uterus where any known direct target genes are yet reported for further functional studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...