Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Reprod ; 27(3): 101-115, 2023 Sep.
Article in English | MEDLINE | ID: mdl-38074462

ABSTRACT

Environmental factors impact oyster growth, condition, and gonadal development, which is linked to gamete characteristics observed through histology. The reproductive cycle of bivalves is related to energy storage and utilization. Therefore, in this study, the year-round growth change and gonadal development of oysters were observed using histological analysis, and the biochemical composition changes were confirmed. The oysters used in this study are being nurtured in Gadeok-do, and 40 oysters were randomly sampled monthly from March 2021 to February 2022. Result of histological analysis of gonads, oysters were showed early development from December to February, late development from March and April, mature and ripe from May to July, spawned from August to October, and spent from November to December. Condition index values of oysters decreased in summer and autumn and increased again when entered the spent after spawning. The protein content of oysters was high in May, the maturity period, and the lipid content decreased during the spawning period. In addition, EPA and DHA, the major fatty acids of oysters, were low during the spawning period and high during the maturation period. As a result, this study suggested a close relationship between changes in oyster growth, biochemical composition, and the reproductive cycle.

2.
Animals (Basel) ; 12(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36009633

ABSTRACT

In olive flounder (Paralichthys olivaceus), growth performance, expression of growth-related factors, digestive physiology, and gut microbiota were assessed under farm conditions in the fish fed diets with low levels of fishmeal. Four experimental diets were prepared, FM70 [control (CON), 70% fishmeal], FM45 (45% fishmeal), FM35A (35% fishmeal), and FM35B (35% fishmeal + insect meal), and fed to the fish for five months. The CON-fed fish had the highest plasma GH, but IGF-1 and hepatic IGF-1 mRNA expression of the olive flounder fed diets with low-fishmeal levels did not significantly differ among diets. The intestinal villus length, muscular thickness, and the number of goblet cells were statistically similar, and ocular examination of hepatopancreas showed no discernable difference in all experimental diets. The chymotrypsin content of FM35B-fed fish is significantly lower, but trypsin and lipase contents are similar. The diversity of gut microbiota did not differ among groups, although the FM35B group had a higher composition of Firmicutes. Thus, a diet with reduced fishmeal content and several alternative protein sources can be used as feed ingredients in feed formulation for olive flounder reared under typical aquaculture farm conditions.

3.
Animals (Basel) ; 11(7)2021 Jul 09.
Article in English | MEDLINE | ID: mdl-34359181

ABSTRACT

Olive flounder (Paralichthys olivaceus) is a commercially important and valuable species for aquaculture in Korea. Due to the unstable supply of fishmeal for farmed fish, an optimum fish-feed formulation should be researched to ensure the sustainability of P. olivaceus aquaculture. This study investigated the effect of three experimental diets: Con (basal diet); FM20 (20% fishmeal replacement of CON); and FM30 (30% fishmeal replacement of CON) on P. olivaceus over 20 weeks at a typical farm by monitoring the growth and factors relating to sexual maturation. The results showed that no differences in growth were observed between the CON and diet-replacement groups. Gonadal oocyte development was similar between the CON and diet-replacement groups. Moreover, sbGnRH and GH expression did not differ between the CON and diet-replacement groups. The levels of Erß and Vtg expression were significantly higher in the FM20 group than in the CON and FM30 groups after the experimental period. The expression of PSS-I was significantly higher in the FM30 group than in the CON and FM20 groups. Therefore, although growth occurred when 30% of the fishmeal was replaced, such high dietary protein replacement may be ill-advised during the maturation of olive flounder at the commercial fish farm.

SELECTION OF CITATIONS
SEARCH DETAIL
...