Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(24)2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33302508

ABSTRACT

G nerve agents are colorless, odorless, and lethal chemical warfare agents (CWAs). The threat of CWAs, which cause critical damage to humans, continues to exist, e.g., in warfare or terrorist attacks. Therefore, it is important to be able to detect these agents rapidly and with a high degree of sensitivity. In this study, a surface acoustic wave (SAW) array device with three SAW sensors coated with different sensing materials and one uncoated sensor was tested to determine the most suitable material for the detection of nerve agents and related simulants. The three materials used were polyhedral oligomeric silsesquioxane (POSS), 1-benzyl-3-phenylthiourea (TU-1), and 1-ethyl-3-(4-fluorobenzyl) thiourea (TU-2). The SAW sensor coated with the POSS-based polymer showed the highest sensitivity and the fastest response time at concentrations below the median lethal concentration (LCt50) for tabun (GA) and sarin (GB). Also, it maintained good performance over the 180 days of exposure tests for dimethyl methylphosphonate (DMMP). A comparison of the sensitivities of analyte vapors also confirmed that the sensitivity for DMMP was similar to that for GB. Considering that DMMP is a simulant which physically and chemically resembles GB, the sensitivity to a real agent of the sensor coated with POSS could be predicted. Therefore, POSS, which has strong hydrogen bond acid properties and which showed similar reaction characteristics between the simulant and the nerve agent, can be considered a suitable material for nerve agent detection.


Subject(s)
Chemical Warfare Agents , Nerve Agents , Smart Materials , Chemical Warfare Agents/analysis , Humans , Polymers , Sarin
2.
Opt Express ; 21(5): 6538-46, 2013 Mar 11.
Article in English | MEDLINE | ID: mdl-23482224

ABSTRACT

We propose and demonstrate 10-Gb/s broadcast signal transmission in a wavelength-division-multiplexing passive optical network (WDM-PON) by employing a modular-type mutually injected Fabry-Perot laser diodes (MI F-P LDs) as a cost-effective multi-wavelength light source (MWS). We introduce a simple interferometric noise suppression technique with proper electrical filtering to improve transmission performance. The noise suppression doubles the number of supported subscribers with a single MI F-P LDs.

SELECTION OF CITATIONS
SEARCH DETAIL
...