Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Xenobiotica ; 53(4): 223-230, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37194558

ABSTRACT

Glutathione S-transferases (GSTs) are conjugating enzymes involved in drug metabolism, antioxidant defence, and cell signalling. Herein, we investigated hepatic GST conjugation in several mouse and rat strains, including both sexes, with a direct comparison to humans.Using general and isoform-selective substrates, all mouse strains had significantly greater activities than humans for total cytosolic GST, GST-M, GST-T, and microsomal GST activities. Some strains had significantly greater GST-P activities compared to humans. Sex differences between males and females were evident in all strains for total cytosolic GST, GST-M, and GST-P, and sex differences in GST-T and microsomal GST activities within strains were noted.All rats had significantly greater activities than humans for GST-M and GST-T; only some strains were significantly greater than humans for GST-P, total cytosolic GST, and microsomal GST. Sex differences within strains showed significantly greater GST-M and GST-T activities in males compared to females. Select strains showed sex differences for total cytosolic and microsomal GST activities; there were no sex differences in GST-P activities.Significant differences in glutathione conjugation between humans and rodents exist, including sex differences. This highlights the need for careful animal selection in pre-clinical studies where GSTs are the primary metabolic pathway.


Subject(s)
Glutathione Transferase , Rodentia , Male , Female , Humans , Rats , Mice , Animals , Rodentia/metabolism , Species Specificity , Glutathione Transferase/metabolism , Liver/metabolism , Glutathione
2.
Opt Express ; 24(20): 22959-22970, 2016 Oct 03.
Article in English | MEDLINE | ID: mdl-27828362

ABSTRACT

Single-molecule localization microscopy (SMLM) has become an essential tool for examining a wide variety of biological structures and processes. However, the relatively long acquisition time makes SMLM prone to drift-induced artifacts. Here we report an optical design with an electrically tunable lens (ETL) that actively stabilizes a SMLM in three dimensions and nearly eliminates the mechanical drift (RMS ~0.7 nm lateral and ~2.7 nm axial). The bifocal design that employed fiducial markers on the coverslip was able to stabilize the sample regardless of the imaging depth. The effectiveness of the ETL was demonstrated by imaging endosomal transferrin receptors near the apical surface of B-lymphocytes at a depth of 8 µm. The drift-free images obtained with the stabilization system showed that the transferrin receptors were present in distinct but heterogeneous clusters with a bimodal size distribution. In contrast, the images obtained without the stabilization system showed a broader unimodal size distribution. Thus, this stabilization system enables a more accurate analysis of cluster topology. Additionally, this ETL-based stabilization system is cost-effective and can be integrated into existing microscopy systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...