Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(9)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32365984

ABSTRACT

In recent years, Korea has sustained consistent access to remote sensed data by launching Korea Multi-Purpose Satellite-3A (KOMPSAT-3A, K3A)-an updated version of the high-resolution KOMPSAT series. This KOMPSAT-3A required calibration and validation (Cal/Val) before and after its launch to enable proper functional characterization and to maintain the veracity of data collected. The Korea Aerospace Research Institute (KARI) executed the initial prelaunch calibration in the laboratory and we performed the Cal/Val of KOMPSAT-3A during the Launch and Early Operation Phase (LEOP) in the field. Two suitable sites in Korea and Mongolia with stable weather, almost uniform terrain, and near Lambertian diffusion, provided the necessary tarp reflectance to calculate the absolute radiometric calibration coefficients. The surface reflectance was determined using 12 and four well-calibrated reference reflectance tarps employing the FieldSpec® 3(Analytical Spectral Devices Inc., Boulder, CO, USA) Spectroradiometer. Subsequently, the top of atmosphere (TOA) radiance was estimated using radiative transfer code (RTC) software based on the Atmospheric and Topographic Correction (ATCOR). In addition, cross calibration was simultaneously performed at the Libya-4 pseudo invariant calibration site (PICS) for KOMPSAT-3A TOA radiance, using the spectral band adjustment factor (SBAF) compensated Landsat 8 reflectance and the Second Simulation of Satellite Signal in the Solar Spectrum (6S) to compute cross calibration coefficients. The results of the KOMPSAT-3A absolute calibration coefficient show that the R2 values were over 0.99, implying a significant correlation for almost all bands between the TOA radiance and the KOMPSAT-3A spectral band response at both campaign sites. However, this study reveals a difference of less than 5% calibration gains for all bands compared to the prelaunch values, while the cross calibration gain is below 5% in visible bands and above 5% in the near infrared band. An effort to optimize the reliability of the absolute calibration coefficients resorted to the rigorous quantification of uncertainties amongst atmospheric conditions, the digital number (DN), the reflectance tarp, the bidirectional reflectance distribution function (BRDF), and ozone levels. Therefore, we presumed that the total uncertainty was 4.27%, which conforms to some published results.

2.
Sensors (Basel) ; 15(9): 22826-53, 2015 Sep 10.
Article in English | MEDLINE | ID: mdl-26378532

ABSTRACT

In very high-resolution (VHR) push-broom-type satellite sensor data, both destriping and denoising methods have become chronic problems and attracted major research advances in the remote sensing fields. Since the estimation of the original image from a noisy input is an ill-posed problem, a simple noise removal algorithm cannot preserve the radiometric integrity of satellite data. To solve these problems, we present a novel method to correct VHR data acquired by a push-broom-type sensor by combining wavelet-Fourier and multiscale non-local means (NLM) filters. After the wavelet-Fourier filter separates the stripe noise from the mixed noise in the wavelet low- and selected high-frequency sub-bands, random noise is removed using the multiscale NLM filter in both low- and high-frequency sub-bands without loss of image detail. The performance of the proposed method is compared to various existing methods on a set of push-broom-type sensor data acquired by Korean Multi-Purpose Satellite 3 (KOMPSAT-3) with severe stripe and random noise, and the results of the proposed method show significantly improved enhancement results over existing state-of-the-art methods in terms of both qualitative and quantitative assessments.

3.
Sensors (Basel) ; 15(3): 6633-51, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25808767

ABSTRACT

Since incoming light to an unmanned aerial vehicle (UAV) platform can be scattered by haze and dust in the atmosphere, the acquired image loses the original color and brightness of the subject. Enhancement of hazy images is an important task in improving the visibility of various UAV images. This paper presents a spatially-adaptive dehazing algorithm that merges color histograms with consideration of the wavelength-dependent atmospheric turbidity. Based on the wavelength-adaptive hazy image acquisition model, the proposed dehazing algorithm consists of three steps: (i) image segmentation based on geometric classes; (ii) generation of the context-adaptive transmission map; and (iii) intensity transformation for enhancing a hazy UAV image. The major contribution of the research is a novel hazy UAV image degradation model by considering the wavelength of light sources. In addition, the proposed transmission map provides a theoretical basis to differentiate visually important regions from others based on the turbidity and merged classification results.

SELECTION OF CITATIONS
SEARCH DETAIL
...