Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 363: 142882, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39025315

ABSTRACT

Efficient separation of actinide elements from molten salts employed in pyroprocessing can significantly diminish the radiological hazards and oversight duration associated with spent nuclear fuel storage. The lanthanum content of waste salts is very high compared to actinides, leading to the co-electrodeposition of both groups of elements for conventional electrochemical techniques. Due to the difficulty in separating the two groups of elements, the feasibility of the density-based separation using liquid bismuth and intermetallics was explored. Hafnium was used as a stand-in for actinide elements with physical properties mirroring those of actinide-laden Bi-Hf intermetallics. Conversely, cerium was chosen to represent lanthanides. This study delved into the formation and spatial distribution of bismuth intermetallics under varying concentration ratios and cooling durations. Comprehensive characterization was achieved using scanning electron microscopy and energy-dispersive spectrometry. The analysis showed that Bi-Ce particles were formed and distributed in the upper layer of the Bi ingot, and Bi-(Ce, Hf) particles containing both Ce and Hf in the lower layer. The findings underscore the viability of density-based separation while highlighting the intricacies related to intermetallic coprecipitation. Continued investigations are essential to fully harness the potential of density-based separation.

SELECTION OF CITATIONS
SEARCH DETAIL
...