Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nature ; 586(7829): 385-389, 2020 10.
Article in English | MEDLINE | ID: mdl-33057219

ABSTRACT

The visualization of accurate colour information using quantum dots has been explored for decades, and commercial products employing environmentally friendly materials are currently available as backlights1. However, next-generation electroluminescent displays based on quantum dots require the development of an efficient and stable cadmium-free blue-light-emitting device, which has remained a challenge because of the inferior photophysical properties of blue-light-emitting materials2,3. Here we present the synthesis of ZnSe-based blue-light-emitting quantum dots with a quantum yield of unity. We found that hydrofluoric acid and zinc chloride additives are effective at enhancing luminescence efficiency by eliminating stacking faults in the ZnSe crystalline structure. In addition, chloride passivation through liquid or solid ligand exchange leads to slow radiative recombination, high thermal stability and efficient charge-transport properties. We constructed double quantum dot emitting layers with gradient chloride content in a light-emitting diode to facilitate hole transport, and the resulting device showed an efficiency at the theoretical limit, high brightness and long operational lifetime. We anticipate that our efficient and stable blue quantum dot light-emitting devices can facilitate the development of electroluminescent full-colour displays using quantum dots.

2.
ACS Appl Mater Interfaces ; 10(5): 4874-4881, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29323479

ABSTRACT

n-Type doping with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl) dimethylamine (N-DMBI) reduces a work function (WF) of graphene by ∼0.45 eV without significant reduction of optical transmittance. Solution process of N-DMBI on graphene provides effective n-type doping effect and air-stability at the same time. Although neutral N-DMBI act as an electron receptor leaving the graphene p-doped, radical N-DMBI acts as an electron donator leaving the graphene n-doped, which is demonstrated by density functional theory. We also verify the suitability of N-DMBI-doped n-type graphene for use as a cathode in inverted polymer light-emitting diodes (PLEDs) by using various analytical methods. Inverted PLEDs using a graphene cathode doped with N-DMBI radical showed dramatically improved device efficiency (∼13.8 cd/A) than did inverted PLEDs with pristine graphene (∼2.74 cd/A). N-DMBI-doped graphene can provide a practical way to produce graphene cathodes with low WF in various organic optoelectronics.

3.
Adv Mater ; 29(12)2017 Mar.
Article in English | MEDLINE | ID: mdl-28117521

ABSTRACT

Highly efficient organic/inorganic hybrid perovskite light-emitting diodes (PeLEDs) based on graphene anode are developed for the first time. Chemically inert graphene avoids quenching of excitons by diffused metal atom species from indium tin oxide. The flexible PeLEDs with graphene anode on plastic substrate show good bending stability; they provide an alternative and reliable flexible electrode for highly efficient flexible PeLEDs.

4.
ACS Appl Mater Interfaces ; 8(23): 14725-31, 2016 Jun 15.
Article in English | MEDLINE | ID: mdl-27253603

ABSTRACT

We introduce a simple, inexpensive, and large-area flexible transparent lamination encapsulation method that uses graphene films with polydimethylsiloxane (PDMS) buffer on polyethylene terephthalate (PET) substrate. The number of stacked graphene layers (nG) was increased from 2 to 6, and 6-layered graphene-encapsulation showed high impermeability to moisture and air. The graphene-encapsulated polymer light emitting diodes (PLEDs) had stable operating characteristics, and the operational lifetime of encapsulated PLEDs increased as nG increased. Calcium oxidation test data confirmed the improved impermeability of graphene-encapsulation with increased nG. As a practical application, we demonstrated large-area flexible organic light emitting diodes (FOLEDs) and transparent FOLEDs that were encapsulated by our polymer/graphene encapsulant.

5.
Nat Commun ; 7: 11791, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27250743

ABSTRACT

Graphene-based organic light-emitting diodes (OLEDs) have recently emerged as a key element essential in next-generation displays and lighting, mainly due to their promise for highly flexible light sources. However, their efficiency has been, at best, similar to that of conventional, indium tin oxide-based counterparts. We here propose an ideal electrode structure based on a synergetic interplay of high-index TiO2 layers and low-index hole-injection layers sandwiching graphene electrodes, which results in an ideal situation where enhancement by cavity resonance is maximized yet loss to surface plasmon polariton is mitigated. The proposed approach leads to OLEDs exhibiting ultrahigh external quantum efficiency of 40.8 and 62.1% (64.7 and 103% with a half-ball lens) for single- and multi-junction devices, respectively. The OLEDs made on plastics with those electrodes are repeatedly bendable at a radius of 2.3 mm, partly due to the TiO2 layers withstanding flexural strain up to 4% via crack-deflection toughening.

6.
Angew Chem Int Ed Engl ; 55(21): 6197-201, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27072071

ABSTRACT

We report effective solution-processed chemical p-type doping of graphene using trifluoromethanesulfonic acid (CF3 SO3 H, TFMS), that can provide essential requirements to approach an ideal flexible graphene anode for practical applications: i) high optical transmittance, ii) low sheet resistance (70 % decrease), iii) high work function (0.83 eV increase), iv) smooth surface, and iv) air-stability at the same time. The TFMS-doped graphene formed nearly ohmic contact with a conventional organic hole transporting layer, and a green phosphorescent organic light-emitting diode with the TFMS-doped graphene anode showed lower operating voltage, and higher device efficiencies (104.1 cd A(-1) , 80.7 lm W(-1) ) than those with conventional ITO (84.8 cd A(-1) , 73.8 lm W(-1) ).

7.
Sci Rep ; 5: 16710, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26567845

ABSTRACT

We have developed a simple, scalable, transfer-free, ecologically sustainable, value-added method to convert inexpensive coal tar pitch to patterned graphene films directly on device substrates. The method, which does not require an additional transfer process, enables direct growth of graphene films on device substrates in large area. To demonstrate the practical applications of the graphene films, we used the patterned graphene grown on a dielectric substrate directly as electrodes of bottom-contact pentacene field-effect transistors (max. field effect mobility ~0.36 cm(2)·V(-1)·s(-1)), without using any physical transfer process. This use of a chemical waste product as a solid carbon source instead of commonly used explosive hydrocarbon gas sources for graphene synthesis has the dual benefits of converting the waste to a valuable product, and reducing pollution.


Subject(s)
Coal Tar/chemistry , Electrodes , Graphite/chemistry , Industrial Waste , Transistors, Electronic , Graphite/chemical synthesis , Naphthacenes/chemistry , Nickel/chemistry , Recycling , Spectrum Analysis, Raman
8.
Adv Mater ; 27(9): 1619-23, 2015 Mar 04.
Article in English | MEDLINE | ID: mdl-25605377

ABSTRACT

n-Type doping of mixed single- and double-layer graphene grown by chemical vapor deposition (CVD) using decamethyl-cobaltocene reveals a local-quasilinear relationship between the work function and the logarithm of the dopant solution concentration. The relationship that arises from bandgap opening is deduced by comparing the relationship between the two factors for single- or double-layer graphene. This work has extensive applicability and practical significance in doping CVD-grown graphene.

9.
Adv Mater ; 26(47): 8010-6, 2014 Dec 17.
Article in English | MEDLINE | ID: mdl-25355654

ABSTRACT

A individually position-addressable large-scale-aligned Cu nanofiber (NF) array is fabricated using electro-hydrodynamic nanowire printing. The printed single-stranded Cu NF has a diameter of about 710 nm and resistivity of 14.1 µΩ cm and is effectively used as source/drain nanoelectrode in pentacene transistors, which show a 25-fold increased hole mobility than that of a device with Cu thin-film electrodes.

10.
Adv Mater ; 26(21): 3459-64, 2014 Jun 04.
Article in English | MEDLINE | ID: mdl-24715696

ABSTRACT

A new technique, electro-hydrodynamic nanowire (e-NW) lithography , is demonstrated for the rapid, inexpensive, and efficient fabrication of graphene nanorib bons (GNRs) on a large scale while simultaneously controlling the location and alignment of the GNRs. A series of interesting GNR architectures, including parallel lines, grids, ladders, and stars are produced. A sub-10-nm-wide GNR is obtained to fabricate field-effect transistors that show a room-temperature on/off current ratio of ca. 70.

11.
Small ; 10(10): 1999-2005, 2014 May 28.
Article in English | MEDLINE | ID: mdl-24616289

ABSTRACT

Although graphene can be easily p-doped by various adsorbates, developing stable n-doped graphene that is very useful for practical device applications is a difficult challenge. We investigated the doping effect of solution-processed (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine (N-DMBI) on chemical-vapor-deposited (CVD) graphene. Strong n-type doping is confirmed by Raman spectroscopy and the electrical transport characteristics of graphene field-effect transistors. The strong n-type doping effect shifts the Dirac point to around -140 V. Appropriate annealing at a low temperature of 80 ºC enables an enhanced electron mobility of 1150 cm(2) V(-1) s(-1). The work function and its uniformity on a large scale (1.2 mm × 1.2 mm) of the doped surface are evaluated using ultraviolet photoelectron spectroscopy and Kelvin probe mapping. Stable electrical properties are observed in a device aged in air for more than one month.

SELECTION OF CITATIONS
SEARCH DETAIL
...