Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Pharm Bull ; 40(6): 797-806, 2017.
Article in English | MEDLINE | ID: mdl-28566623

ABSTRACT

Moutan Cortex, the root bark of Paeonia suffruticosa ANDREWS in Ranunculaceae, has widely demonstrated analgesic, anti-spasmodic, and anti-inflammatory effects in various cancer and immune cell lines. Oxidative stress is associated with development of several diseases, including liver disease. We prepared the water extract of Moutan Cortex (MCE) to investigate the cytoprotective activities and its mechanism. MCE protected hepatocytes from arachidonic acid (AA)+iron induced oxidative stress, as indicated by reactive oxygen species (ROS) production and cell viability analysis. MCE also suppressed mitochondrial dysfunction in AA+iron-treated human hepatocyte-derived hepatocellular carcinoma cell line, HepG2 cells. In addition, MCE treatment induces AMP-activated protein kinase (AMPK) and liver kinase B1 phosphorylation, which play a role in inhibition of oxidative stress induced cell death. Moreover, one of the MCE compounds, chlorogenic acid, exerted protective effects against oxidative stress and apoptosis. Taken together, MCE protected hepatocytes against AA+iron-induced oxidative stress through AMPK activation, and may be a candidate for the treatment of liver disease.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Hepatocytes/drug effects , Protective Agents/pharmacology , AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases/metabolism , Arachidonic Acid , Cell Line, Tumor , Chlorogenic Acid/pharmacology , Glutathione/metabolism , Hepatocytes/metabolism , Humans , Hydrogen Peroxide/metabolism , Iron , Membrane Potential, Mitochondrial/drug effects , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism , Mitochondria, Liver/physiology , Oxidative Stress/drug effects , Paeonia , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/drug effects
2.
Chem Biol Interact ; 262: 57-68, 2017 Jan 25.
Article in English | MEDLINE | ID: mdl-27916511

ABSTRACT

Medicinal herbs are used to treat or prevent various diseases, and function to regulate protective mechanisms as nutraceuticals. Fructus Ligustri lucidi is the fruit of Ligustrum lucidum and has been used for its tonic effects on the liver. This study was designed to examine the effects of Fructus Ligustri lucidi water extract (FLL) against severe oxidative stress and mitochondrial impairment in vivo and in vitro and to elucidate its cellular mechanisms of action. Treatment of HepG2 cells with arachidonic acid (AA) + iron successfully induced oxidative stress and apoptosis, as indicated by depletion of glutathione, formation of ROS, decreses in mitochondrial membrane potential (Δψm), and altered expression of apoptosis-related proteins, such as procaspase-3 and Bcl-xL. FLL treatment significantly blocked these pathological changes and the mitochondrial dysfunction caused by AA + iron, which were similar with the effect of aminoimidazole-carboxamide-ß-d-ribofuranoside (AICAR). Moreover, FLL induced the activation of AMP-activated protein kinase (AMPK), which was mediated by its upstream kinase LKB1. Inhibition or activation of AMPK revealed the role of AMPK in cellular protection conferred by FLL in LKB1-deficient cells. In mice, oral administration of 100 mg/kg FLL activated AMPK in the liver, and protected against oxidative stress and liver injury induced by CCl4 injection. Among the components of FLL, chlorogenic acid was found to be responsible for the protection of hepatocytes against AA + iron-induced cellular damage. Overall, our results confirmed that FLL has the ability to protect hepatocytes against oxidative injury through regulation of the AMPK signaling pathway.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Antioxidants/pharmacology , Ligustrum/chemistry , Plant Extracts/pharmacology , AMP-Activated Protein Kinase Kinases , Animals , Antioxidants/chemistry , Caspase 3/metabolism , Cell Line , Enzyme Activation/drug effects , Fruit/chemistry , Fruit/metabolism , Hep G2 Cells , Humans , Ligustrum/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Membrane Potential, Mitochondrial/drug effects , Mice , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Stress/drug effects , Plant Extracts/chemistry , Plants, Medicinal/chemistry , Plants, Medicinal/metabolism , Protein Serine-Threonine Kinases/metabolism , Reactive Oxygen Species/metabolism , bcl-X Protein/metabolism
3.
Chem Biol Interact ; 224: 58-67, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25451574

ABSTRACT

Hepatic stellate cells (HSCs) are key mediators of fibrogenesis, and the regulation of their activation is now viewed as an attractive target for the treatment of liver fibrosis. Here, the authors investigated the ability of sauchinone, an active lignan found in Saururus chinensis, to regulate the activation of HSCs, to prevent liver fibrosis, and to inhibit oxidative stress in vivo and in vitro. Blood biochemistry and histopathology were assessed in CCl4-induced mouse model of liver fibrosis to investigate the effects of sauchinone. In addition, transforming growth factor-ß1 (TGF-ß1)-activated LX-2 cells (a human HSC line) were used to investigate the in vitro effects of sauchinone. Sauchinone significantly inhibited liver fibrosis, as indicated by decreases in regions of hepatic degeneration, inflammatory cell infiltration, and the intensity of α-smooth muscle actin staining in mice. Sauchinone blocked the TGF-ß1-induced phosphorylation of Smad 2/3 and the transcript levels of plasminogen activator inhibitor-1 and matrix metalloproteinase-2 as well as autophagy in HSCs. Furthermore, sauchinone inhibited oxidative stress, as assessed by stainings of 4-hydroxynonenal and nitrotyrosine: these events may have a role in its inhibitory effects on HSCs activation. Sauchinone attenuated CCl4-induced liver fibrosis and TGF-ß1-induced HSCs activation, which might be, at least in part, mediated by suppressing autophagy and oxidative stress in HSCs.


Subject(s)
Benzopyrans/pharmacology , Dioxoles/pharmacology , Hepatic Stellate Cells/drug effects , Liver Cirrhosis/prevention & control , Protective Agents/pharmacology , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Transforming Growth Factor beta1/metabolism , Actins/metabolism , Aldehydes/metabolism , Animals , Autophagy/drug effects , Carbon Tetrachloride , Cell Line , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Liver/metabolism , Liver/pathology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/pathology , Mice , Reactive Oxygen Species/metabolism , Saururaceae , Signal Transduction , Transforming Growth Factor beta1/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...