Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomater Sci ; 12(2): 479-494, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38090986

ABSTRACT

Cartilage defects can be difficult to heal, potentially leading to complications such as osteoarthritis. Recently, a tissue engineering approach that uses scaffolds and growth factors has been proposed to regenerate new cartilage tissues. Herein, we investigated the application of hyaluronic acid (HA) gel loaded with transforming growth factor-beta 3 (TGF-ß3) for enhanced cartilage regeneration. We assessed the clinical conditions required to efficiently enhance the ability of the modified HA gel to repair defective cartilage. Based on our findings, the prepared HA gel exhibited good physicochemical and mechanical properties and was non-toxic and non-inflammatory. Moreover, HA gel-loaded TGF-ß3 (HAT) had improved biocompatibility and promoted the synthesis of cartilage-specific matrix and collagen, further improving its ability to repair defects. The application of HAT resulted in an initial burst release of HA, which degraded slowly in vivo. Finally, HAT combined with microfracture-inducing bone marrow stem cells could significantly improve the cartilage microenvironment and regeneration of cartilage defects. Our results indicate that HA is a suitable material for developing growth factor carriers, whereas HAT is a promising candidate for cartilage regeneration. Furthermore, this differentiated strategy provides a rapid and effective clinical approach for next-generation cartilage regeneration.


Subject(s)
Hyaluronic Acid , Mesenchymal Stem Cells , Hyaluronic Acid/chemistry , Transforming Growth Factor beta3/chemistry , Hydrogels/chemistry , Cartilage/metabolism , Transforming Growth Factors/metabolism , Transforming Growth Factors/pharmacology
2.
Int J Biol Macromol ; 236: 123878, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36894057

ABSTRACT

Recently, the number of people suffering from visual loss due to eye diseases is increasing rapidly around the world. However, due to the severe donor shortage and the immune response, corneal replacement is needed. Gellan gum (GG) is biocompatible and widely used for cell delivery or drug delivery, but its strength is not suitable for the corneal substitute. In this study, a GM hydrogel was prepared by blending methacrylated gellan gum with GG (GM) to give suitable mechanical properties to the corneal tissue. In addition, lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP), a crosslinking initiator, was added to the GM hydrogel. After the photo-crosslinking treatment, it was named GM/LAP hydrogel. GM and GM/LAP hydrogels were analyzed for physicochemical properties, mechanical characterization, and transparency tests to confirm their applicability as carriers for corneal endothelial cells (CEnCs). Also, in vitro studies were performed with cell viability tests, cell proliferation tests, cell morphology, cell-matrix remodeling analysis, and gene expression evaluation. The compressive strength of the GM/LAP hydrogel was improved compared to the GM hydrogel. The GM/LAP hydrogel showed excellent cell viability, proliferation, and cornea-specific gene expression than the GM hydrogel. Crosslinking-improved GM/LAP hydrogel can be applied as a promising cell carrier in corneal tissue engineering.


Subject(s)
Endothelial Cells , Hydrogels , Humans , Hydrogels/pharmacology , Hydrogels/chemistry , Polysaccharides, Bacterial/pharmacology , Polysaccharides, Bacterial/chemistry , Tissue Engineering
3.
ACS Omega ; 7(45): 41331-41340, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36406493

ABSTRACT

The damage to retinal pigment epithelium (RPE) cells can lead to vision loss and permanent blindness. Therefore, an effective therapeutic strategy has emerged to replace damaged cells through RPE cell delivery. In this study, we fabricated injectable gellan gum (GG)/silk sericin (SS) hydrogels as a cell carrier by blending GG and SS. To determine the appropriate concentration of SS for human RPE ARPE-19, 0, 0.05, 0.1, and 0.5% (w/v) of SS solution were blended in 1% (w/v) GG solution (GG/SS 0%, GG/SS 0.05%, GG/SS 0.1%, and GG/SS 0.5%, respectively). The physical and chemical properties were measured through Fourier-transform infrared spectroscopy, scanning electron microscopy, mass swelling, and weight loss. Also, viscosity, injection force, and compressive tests were used to evaluate mechanical characteristics. Cell proliferation and differentiation of ARPE-19 were evaluated using quantitative dsDNA analysis and real-time polymerase chain reaction, respectively. The addition of SS gave GG/SS hydrogels a compressive strength similar to that of natural RPE tissue, which may well support the growth of RPE and enhance cell proliferation and differentiation. In particular, the GG/SS 0.5% hydrogel showed the most similar compressive strength (about 10 kPa) and exhibited the highest gene expression related to ARPE-19 cell proliferation. These results indicate that GG/SS 0.5% hydrogels can be a promising biomaterial for cell delivery in retina tissue engineering.

4.
Int J Biol Macromol ; 222(Pt B): 2144-2157, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36216106

ABSTRACT

This study shows tunable stress relaxing gellan gum (GG) hydrogel for enhanced cell growth and regenerative medicine. The molecular weight and physical crosslinking density of GG were tuned and characterized with physicochemical analysis and mechanical tests. The result showed that a decrease in the molecular weight of the GG correlated with a decline in the mechanical properties but faster stress relaxing character. We also discovered that human-derived bone marrow stem cells (hBMSC) showed active viability, proliferation, and remodeling in the fast stress relaxing GG hydrogel. In particular, hBMSC showed an enhanced release profile of growth factors and exosomes (Exo) in the fast stress relaxing GG hydrogel. The secretome obtained from hBMSC embedded in hydrogel exhibited similar cytotoxicity and wound healing properties to that of secretome extracted from hBMSC cultured in a tissue culture plate (TCP) a standard culture condition. Thus, this work demonstrates the potential of fast stress relaxing GG hydrogels for medical application.


Subject(s)
Mesenchymal Stem Cells , Polysaccharides, Bacterial , Humans , Polysaccharides, Bacterial/pharmacology , Polysaccharides, Bacterial/chemistry , Hydrogels/pharmacology , Hydrogels/chemistry , Bone and Bones , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...