Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 307: 120899, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35988753

ABSTRACT

AIMS: 4-1BB is a member of the tumor necrosis factor receptor superfamily that mainly expressed on activated T-cells and plays important roles in cell proliferation and survival of T-cells and natural killer cells. The roles of 4-1BB in immune cells have been intensively studied, whereas little is known about the expression and roles of 4-1BB in cancer cells. MAIN METHODS: In the present study, we investigated 4-1BB expression in colorectal cancer tissues from human patients and established colorectal cancer cells, using mRNA expression, FACS, and immunostaining. Cancer cell proliferation and metastasis regulated by transfected 4-1BB was evaluated by cell growth rate, colony forming assay, cell migration, and Western blot with antibodies which are involved in epithelial-mesenchymal transition and anti-apoptosis. Expression of 4-1BB was knockdown by 4-1BB shRNA to prove that 4-1BB was involved in the cell proliferation. In vivo, 4-1BB transfected cancer cells were injected into mice, to induce tumor local region or lung. KEY FINDINGS: We found that colorectal cancer tissues from human patients and established colorectal cancer cells expressed 4-1BB at the high level. The higher expression of 4-1BB proliferated faster. In addition, we identified two forms of 4-1BB detected in colorectal cancer cells: full length form that was located on the plasma membrane and a short soluble form in the cytosol. The soluble form was also detected in the plasma from the mice with tumor xenografts expressed 4-1BB. SIGNIFICANCE: Tumor-mediated 4-1BB expression in the colorectal cancer cells showed effects on cancer cell proliferation, invasion, and metastasis.


Subject(s)
Colorectal Neoplasms , Tumor Necrosis Factor Receptor Superfamily, Member 9 , Animals , Cell Proliferation , Colorectal Neoplasms/pathology , Humans , Mice , RNA, Messenger , RNA, Small Interfering/genetics , Receptors, Tumor Necrosis Factor , Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics
2.
Biomater Res ; 26(1): 8, 2022 Mar 07.
Article in English | MEDLINE | ID: mdl-35256008

ABSTRACT

BACKGROUND: Superparamagnetic iron oxide nanoparticles (SPIO) have been applied for decades to design theranostic polymeric micelles for targeted cancer therapy and diagnostic MR imaging. However, the effects of SPIO on the physicochemical, and biological properties of polymeric micelles have not yet been fully elucidated. Therefore, we investigated potential effect of SPIO on the physical and biological properties of theranostic polymeric micelles using representative cancer drug (doxorubicin; Doxo) and polymer carrier (i.e., poly (ethylene glycol)-co-poly(D,L-lactide), PEG-PLA). METHODS: SPIO were synthesized from Fe(acetyl acetonate)3 in an aryl ether. SPIO and Doxo were loaded into the polymeric micelles by a solvent-evaporation method. We observed the effect of SPIO-clustering on drug loading, micelle size, thermodynamic stability, and theranostic property of PEG-PLA polymeric micelles. In addition, cellular uptake behaviors, pharmacokinetic and biodistribution study were performed. RESULTS: SPIO formed hydrophobic geometric cavity in the micelle core and significantly affected the integrity of micelles in terms of micelle size, Doxo loading, critical micelle concentration (CMC) and in vitro dissociation. In vivo pharmacokinetic studies also showed the enhanced Area Under Curve (AUC) and elongated the half-life of Doxo. CONCLUSIONS: Clustered SPIO in micelles largely affects not only MR imaging properties but also biological and physical properties of polymeric micelles.

3.
Biomater Res ; 25(1): 42, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34823601

ABSTRACT

BACKGROUND: Aptamer has been called "chemical antibody" which displays the specific affinity to target molecules compared to that of antibodies and possesses several therapeutic advantages over antibodies in terms of size, accessibility to synthesis, and modification. Based on the attractive properties, aptamers have been interested in many directions and now are emerged as new target-designed cancer drug. MAIN BODY: Currently, new types of aptamers have been reported and attracted many scientists' interesting. Due to simplicity of chemical modification and ready-made molecular engineering, scientists have developed newly designed aptamers conjugated with a wide range of therapeutics, aptamer-drug conjugates; ApDCs, from chemotherapy to phototherapy, gene therapy, and vaccines. ApDCs display synergistic therapeutic effects in cancer treatment. CONCLUSION: In this paper, we reviewed various kinds of ApDCs, i.e., ApDC nucleotide analogs, ApDC by drug intercalation, and ApDC by using chemical linker. Current data prove these ApDCs have sufficient potential to complete clinical development soon. Advanced technology of cancer drug delivery and combination treatment of cancers enables aptamer and conjugated drug (ApDCs) efficient means for targeted cancer treatment that reduces potential toxicity and increases therapeutic efficacy.

SELECTION OF CITATIONS
SEARCH DETAIL
...