Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 18(17): 18303-11, 2010 Aug 16.
Article in English | MEDLINE | ID: mdl-20721223

ABSTRACT

We propose a highly efficient hybrid light-emitting device (LED) with a single active layer where CdSe/ZnS quantum dots (QDs) are dispersed as a guest material in a conjugated polymer (co-polymer) matrix used for a host material. In our structure, the QDs act on light-emitting chromophores by trapping the migrating excitons in the co-polymer matrix via Förster energy transfer, and improve the charge balance within the co-polymer by trapping the injected electron carriers. Experimental results show that the electroluminescent properties highly depend on the doping density of the QDs within the co-polymer matrix, where the luminance as well as the external current efficiency are initially enhanced with increasing the concentration of the dispersed QDs in the co-polymer solution, and then such properties are degraded due to aggregation of the QDs. We can get the maximum brightness of 9,088 cd/m(2) and the maximum external current efficiency of 7.5 cd/A in mixing ratio of the QDs by 1.0 wt%. The external current efficiency is enhanced by over 15 times and the turn-on voltage is reduced in comparison with the corresponding values for a reference device that uses only a co-polymer as an active layer.


Subject(s)
Cadmium Compounds/chemistry , Light , Nanotechnology/methods , Optical Devices , Quantum Dots , Selenium Compounds/chemistry , Sulfides/chemistry , Zinc Compounds/chemistry , Equipment Design , Luminescence , Organophosphorus Compounds/chemistry , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...