Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 6: 34295, 2016 10 05.
Article in English | MEDLINE | ID: mdl-27703222

ABSTRACT

Interaction between electrons has long been a focused topic in condensed-matter physics since it has led to the discoveries of astonishing phenomena, for example, high-Tc superconductivity and colossal magnetoresistance (CMR) in strongly-correlated materials. In the study of strongly-correlated perovskite oxides, Nb-doped SrTiO3 (Nb:SrTiO3) has been a workhorse not only as a conducting substrate, but also as a host possessing high carrier mobility. In this work, we report the observations of large linear magnetoresistance (LMR) and the metal-to-insulator transition (MIT) induced by magnetic field in heavily-doped Nb:STO (SrNb0.2Ti0.8O3) epitaxial thin films. These phenomena are associated with the interplay between the large classical MR due to high carrier mobility and the electronic localization effect due to strong spin-orbit coupling, implying that heavily Nb-doped Sr(Nb0.2Ti0.8)O3 is promising for the application in spintronic devices.

2.
Sci Rep ; 6: 25967, 2016 05 19.
Article in English | MEDLINE | ID: mdl-27193161

ABSTRACT

We have synthesized thermodynamically metastable Ca2IrO4 thin-films on YAlO3 (110) substrates by pulsed laser deposition. The epitaxial Ca2IrO4 thin-films are of K2NiF4-type tetragonal structure. Transport and optical spectroscopy measurements indicate that the electronic structure of the Ca2IrO4 thin-films is similar to that of Jeff = 1/2 spin-orbit-coupled Mott insulator Sr2IrO4 and Ba2IrO4, with the exception of an increased gap energy. The gap increase is to be expected in Ca2IrO4 due to its increased octahedral rotation and tilting, which results in enhanced electron-correlation, U/W. Our results suggest that the epitaxial stabilization growth of metastable-phase thin-films can be used effectively for investigating layered iridates and various complex-oxide systems.

3.
Sci Rep ; 6: 23621, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27033248

ABSTRACT

We have investigated how the recently-developed water-leaching method for atomically-flat SrTiO3 (STO) substrates affects the transport properties of LaAlO3 (LAO) and STO heterointerfaces. Using pulsed laser deposition at identical growth conditions, we have synthesized epitaxial LAO thin-films on two different STO substrates, which are prepared by water-leaching and buffered hydrofluoric acid (BHF) etching methods. The structural, transport, and optical properties of LAO/STO heterostructures grown on water-leached substrates show the same high-quality as the samples grown on BHF-etched substrates. These results indicate that the water-leaching method can be used to grow complex oxide heterostructures with atomically well-defined heterointerfaces without safety concerns.

4.
Nanotechnology ; 27(15): 155705, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26933770

ABSTRACT

Although enhanced conductivity of ferroelectric domain boundaries has been found in BiFeO3 and Pb(Zr,Ti)O3 films as well as hexagonal rare-earth manganite single crystals, the mechanism of the domain wall conductivity is still under debate. Using conductive atomic force microscopy, we observe enhanced conductance at the electrically-neutral domain walls in semiconducting hexagonal ferroelectric TbMnO3 thin films where the structure and polarization direction are strongly constrained along the c-axis. This result indicates that domain wall conductivity in ferroelectric rare-earth manganites is not limited to charged domain walls. We show that the observed conductivity in the TbMnO3 films is governed by a single conduction mechanism, namely, the back-to-back Schottky diodes tuned by the segregation of defects.

5.
Phys Rev Lett ; 112(14): 147201, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24766006

ABSTRACT

We report x-ray resonant magnetic scattering and resonant inelastic x-ray scattering studies of epitaxially strained Sr2IrO4 thin films. The films were grown on SrTiO3 and (LaAlO3)0.3(Sr2AlTaO6)0.7 substrates, under slight tensile and compressive strains, respectively. Although the films develop a magnetic structure reminiscent of bulk Sr2IrO4, the magnetic correlations are extremely anisotropic, with in-plane correlation lengths significantly longer than the out-of-plane correlation lengths. In addition, the compressive (tensile) strain serves to suppress (enhance) the magnetic ordering temperature TN, while raising (lowering) the energy of the zone-boundary magnon. Quantum chemical calculations show that the tuning of magnetic energy scales can be understood in terms of strain-induced changes in bond lengths.

6.
Rev Sci Instrum ; 84(4): 043902, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23635204

ABSTRACT

We present a pulsed laser deposition system that can monitor growth by simultaneously using in situ optical spectroscopic ellipsometry (SE) and reflection high-energy electron diffraction (RHEED). The RHEED precisely monitors the number of thin-film layers and surface structure during the deposition, and the SE measures the optical spectra of the samples simultaneously. The thin-film thickness information obtained from RHEED facilitates the SE modeling process, which allows extracting the in situ optical spectra, i.e., the dielectric functions of thin-films during growth. The in situ dielectric functions contain indispensable information about the electronic structure of thin-films. We demonstrate the performance of this system by growing LaMnO(3+δ) (LMO) thin-films on SrTiO3 (001) substrates. By using in situ SE and RHEED simultaneously, we show that real-time thickness and dielectric functions of the LMO thin-films can be effectively extracted. The simultaneous monitoring of both optical SE and RHEED offers important clues to understand the growth mechanism of atomic-scale thin-films.

7.
Phys Rev Lett ; 110(1): 017401, 2013 Jan 04.
Article in English | MEDLINE | ID: mdl-23383835

ABSTRACT

Resonant soft-x-ray scattering measurements have been performed to investigate interface electronic structures of (LaAlO(3)/SrTiO(3)) superlattices. Resonant scattering intensities at superlattice reflections show clear evidence of degeneracy lifting in t(2g) states of interface Ti ions. Polarization dependence of intensities indicates the energy of d(xy) states is lower by ~1 eV than two other t(2g) states. The energy splitting is insensitive to epitaxial strain. The orbital reconstruction is induced by oxygen vacancies and confined to the interface within two unit cells, indicating charge compensation at the polar interfaces.


Subject(s)
Models, Chemical , Oxides/chemistry , Oxygen/chemistry , Strontium/chemistry , Titanium/chemistry , X-Ray Diffraction/methods , Aluminum/chemistry , Cations/chemistry , Lanthanum/chemistry
8.
Phys Rev Lett ; 104(3): 036401, 2010 Jan 22.
Article in English | MEDLINE | ID: mdl-20366664

ABSTRACT

We report spectroscopic ellipsometry measurements of the anisotropy of the interband transitions parallel and perpendicular to the planes of (LaTiO3)n(LaAlO3)5 multilayers with n=1-3. These provide direct information about the electronic structure of the two-dimensional (2D) 3d{1} state of the Ti ions. In combination with local density approximation, including a Hubbard U calculation, we suggest that 2D confinement in the TiO2 slabs lifts the degeneracy of the t{2g} states leaving only the planar d{xy} orbitals occupied. We outline that these multilayers can serve as a model system for the study of the t{2g} 2D Hubbard model.

9.
Phys Rev Lett ; 102(2): 027001, 2009 Jan 16.
Article in English | MEDLINE | ID: mdl-19257309

ABSTRACT

Spectroscopic ellipsometry is used to determine the dielectric function of superconducting LaFeAsO0.9F0.1 (T_{c}=27 K) and undoped LaFeAsO polycrystalline samples in the wide range 0.01-6.5 eV at temperatures 10< or =T< or =350 K. The charge carrier response in both samples is heavily damped. The spectral weight transfer in LaFeAsO associated with an opening of the pseudogap at about 0.65 eV is restricted to energies below 2 eV. The spectra of superconducting LaFeAsO0.9F0.1 reveal a significant transfer of spectral weight to a broad optical band above 4 eV with increasing temperature. Our data may imply that the electronic states near the Fermi surface are strongly renormalized due to electron-phonon and/or electron-electron interactions.

10.
Phys Rev Lett ; 99(26): 266801, 2007 Dec 31.
Article in English | MEDLINE | ID: mdl-18233598

ABSTRACT

We used infrared spectroscopic ellipsometry to investigate the electronic properties of LaTiO_{3}/SrTiO_{3} superlattices (SLs). Our results indicated that, independent of the SL periodicity and individual layer thickness, the SLs exhibited a Drude metallic response with sheet carrier density per interface approximately 3x10;{14} cm;{-2}. This is probably due to the leakage of d electrons at interfaces from the Mott insulator LaTiO3 to the band insulator SrTiO3. We observed a carrier relaxation time approximately 35 fs and mobility approximately 35 cm;{2} V-1 s;{-1} at 10 K, and an unusual temperature dependence of carrier density that was attributed to the dielectric screening of quantum paraelectric SrTiO3.

SELECTION OF CITATIONS
SEARCH DETAIL
...