Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Nano Lett ; 24(26): 7999-8007, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38900975

ABSTRACT

The rapid increase in data storage worldwide demands a substantial amount of energy consumption annually. Studies looking at low power consumption accompanied by high-performance memory are essential for next-generation memory. Here, Graphdiyne oxide (GDYO), characterized by facile resistive switching behavior, is systematically reported toward a low switching voltage memristor. The intrinsic large, homogeneous pore-size structure in GDYO facilitates ion diffusion processes, effectively suppressing the operating voltage. The theoretical approach highlights the remarkably low diffusion energy of the Ag ion (0.11 eV) and oxygen functional group (0.6 eV) within three layers of GDYO. The Ag/GDYO/Au memristor exhibits an ultralow operating voltage of 0.25 V with a GDYO thickness of 5 nm; meanwhile, the thicker GDYO of 29 nm presents multilevel memory with an ON/OFF ratio of up to 104. The findings shed light on memory resistive switching behavior, facilitating future improvements in GDYO-based devices toward opto-memristors, artificial synapses, and neuromorphic applications.

2.
ACS Infect Dis ; 10(6): 1890-1895, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38738652

ABSTRACT

Currently used visible light catalysts either operate with high-power light sources or require prolonged periods of time for catalytic reactions. This presents a limitation regarding facile application in indoor environments and spaces frequented by the public. Furthermore, this gives rise to elevated power consumption. Here, we enhance photocatalytic performance with blue TiO2 and WO3 complexes covalently coupled through an organic molecule, 3-mercaptopropionic acid, under indoor light. Antibacterial experiments against 108 CFU/mL Escherichia coli (E. coli) suspensions were conducted under indoor light exposure conditions. They showed a sterilization effect of almost 90% within 70 min and nearly 100% after 110 min. The complex generates reactive oxygen species (ROS), such as •OH and O2•-, under natural air conditions. We also showed that h+ and •OH are important for sterilizing E. coli using common scavengers. This research highlights the potential of these complexes to generate ROS, effectively playing a crucial role in antibacterial effects under indoor light.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Light , Reactive Oxygen Species , Titanium , Tungsten , Escherichia coli/drug effects , Escherichia coli/radiation effects , Titanium/chemistry , Titanium/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Tungsten/chemistry , Tungsten/pharmacology , Catalysis , Reactive Oxygen Species/metabolism , Oxides/pharmacology , Oxides/chemistry , Microbial Sensitivity Tests
3.
ACS Appl Mater Interfaces ; 15(48): 56084-56094, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38058106

ABSTRACT

Currently, most carbon monoxide (CO) gas sensors work at high temperatures of over 150 °C. Developing CO gas sensors that operate at room temperature is challenging because of the sensitivity trade-offs. Here, we report an ultrasensitive CO gas sensor at room temperature using fluorine-graphdiyne (F-GDY) in which electrons are increased by light. The GDY films used as channels of field-effect transistors were prepared by using chemical vapor deposition and were characterized by using various spectroscopic techniques. With exposure to UV light, F-GDY showed a more efficient photodoping effect than hydrogen-graphdiyne (H-GDY), resulting in a larger negative shift in the charge neutral point (CNP) to form an n-type semiconductor and an increase in the Fermi level from -5.27 to -5.01 eV. Upon CO exposure, the negatively shifted CNP moved toward a positive shift, and the electrical current decreased, indicating electron transfer from photodoped GDYs to CO. Dynamic sensing experiments demonstrated that negatively charged F-GDY is remarkably sensitive to an electron-deficient CO gas, even with a low concentration of 200 parts per billion. This work provides a promising solution for enhancing the CO sensitivity at room temperature and expanding the application of GDYs in electronic devices.

4.
ACS Appl Mater Interfaces ; 15(35): 41708-41719, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37621110

ABSTRACT

The sp-hybridized carbon network in single- or few-layer γ-graphyne (γ-GY) has a polarized electron distribution, which can be crucial in overcoming biosafety issues. Here, we report the low-temperature synthesis, electronic properties, and amyloid fibril nanostructures of electrostatic few-layer γ-GY. ABC stacked γ-GY is synthesized by layer-by-layer growth on a catalytic copper surface, exhibiting intrinsic p-type semiconducting properties in few-layer γ-GY. Thickness-dependent electronic properties of γ-GY elucidate interlayer interactions by electron doping between electrostatic layers and layer stacking-involved modulation of the band gap. Electrostatic few-layer γ-GY induces high electronic sensitivity and intense interaction with amyloid beta (i.e., Aß40) peptides assembling into elongated mature Aß40 fibrils. Two-dimensional biocompatible nanostructures of Aß40 fibrils/few-layer γ-GY enable excellent cell viability and high neuronal differentiation of living cells without external stimulation.


Subject(s)
Amyloid beta-Peptides , Carbon , Temperature , Catalysis , Cell Survival
5.
Small ; : e2304560, 2023 Aug 06.
Article in English | MEDLINE | ID: mdl-37544918

ABSTRACT

Atomic-scale electrocatalysts greatly improve the performance and efficiency of water splitting but require special adjustments of the supporting structures for anchoring and dispersing metal single atoms. Here, the structural evolution of atomic-scale electrocatalysts for water splitting is reviewed based on different synthetic methods and structural properties that create different environments for electrocatalytic activity. The rate-determining step or intermediate state for hydrogen or oxygen evolution reactions is energetically stabilized by the coordination environment to the single-atom active site from the supporting material. In large-scale practical use, maximizing the loading amount of metal single atoms increases the efficiency of the electrocatalyst and reduces the economic cost. Dual-atom electrocatalysts with two different single-atom active sites react with an increased number of water molecules and reduce the adsorption energy of water derived from the difference in electronegativity between the two metal atoms. In particular, single-atom dimers induce asymmetric active sites that promote the degradation of H2 O to H2 or O2 evolution. Consequently, the structural properties of atomic-scale electrocatalysts clarify the atomic interrelation between the catalytic active sites and the supporting material to achieve maximum efficiency.

6.
Adv Sci (Weinh) ; 10(25): e2300925, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37424035

ABSTRACT

Graphdiyne (GDY), a new 2D material, has recently proven excellent performance in photodetector applications due to its direct bandgap and high mobility. Different from the zero-gap of graphene, these preeminent properties made GDY emerge as a rising star for solving the bottleneck of graphene-based inefficient heterojunction. Herein, a highly effective graphdiyne/molybdenum (GDY/MoS2 ) type-II heterojunction in a charge separation is reported toward a high-performance photodetector. Characterized by robust electron repulsion of alkyne-rich skeleton, the GDY based junction facilitates the effective electron-hole pairs separation and transfer. This results in significant suppression of Auger recombination up to six times at the GDY/MoS2 interface compared with the pristine materials owing to an ultrafast hot hole transfer from MoS2 to GDY. GDY/MoS2 device demonstrates notable photovoltaic behavior with a short-circuit current of -1.3 × 10-5 A and a large open-circuit voltage of 0.23 V under visible irradiation. As a positive-charge-attracting magnet, under illumination, alkyne-rich framework induces positive photogating effect on the neighboring MoS2 , further enhancing photocurrent. Consequently, the device exhibits broadband detection (453-1064 nm) with a maximum responsivity of 78.5 A W-1 and a high speed of 50 µs. Results open up a new promising strategy using GDY toward effective junction for future optoelectronic applications.

7.
ACS Appl Mater Interfaces ; 14(48): 53603-53614, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36404762

ABSTRACT

Band-edge modulation of halide perovskites as photoabsorbers plays significant roles in the application of photovoltaic and photochemical systems. Here, Lewis acidity of dopants (M) as the new descriptor of engineering the band-edge position of the perovskite is investigated in the gradiently doped perovskite along the core-to-surface (CsPbBr3-CsPb1-xMxBr3). Reducing M-bromide bond strength with an increase in hardness of acidic M increases the electron ability of basic Br, thus strengthening the Pb-Br orbital coupling in M-Pb-Br, noted as the inductive effect of dopants. Especially, the highly hard Lewis acidic Mg localized in the outer position of the perovskite induces the increase of work function and then shifts band edge upward along the core-to-surface of the perovskite. Thus, charge separation driven by the dopant-induced internal electric field induces the slow annihilation of the excited holes, improving the slow aromatic Csp3-H dissociation in the photocatalytic oxidation process by ∼211% (491.39 µmol g-1 h-1) enhancements, compared with undoped nanocrystals.

8.
Nat Commun ; 13(1): 4556, 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35961959

ABSTRACT

The device's integration of molecular electronics is limited regarding the large-scale fabrication of gap electrodes on a molecular scale. The van der Waals integration (vdWI) of a vertically aligned molecular layer (0D) with 2D or 3D electrodes indicates the possibility of device's integration; however, the active junction area of 0D-2D and 0D-3D vdWIs remains at a microscale size. Here, we introduce the robust fabrication of a vertical 1D-0D-1D vdWI device with the ultra-small junction area of 1 nm2 achieved by cross-stacking top carbon nanotubes (CNTs) on molecularly assembled bottom CNTs. 1D-0D-1D vdWI memories are demonstrated through ferroelectric switching of azobenzene molecules owing to the cis-trans transformation combined with the permanent dipole moment of the end-tail -CF3 group. In this work, our 1D-0D-1D vdWI memory exhibits a retention performance above 2000 s, over 300 cycles with an on/off ratio of approximately 105 and record current density (3.4 × 108 A/cm2), which is 100 times higher than previous study through the smallest junction area achieved in a vdWI. The simple stacking of aligned CNTs (4 × 4) allows integration of memory arrays (16 junctions) with high device operational yield (100%), offering integration guidelines for future molecular electronics.

9.
ACS Appl Mater Interfaces ; 13(9): 11403-11413, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33636973

ABSTRACT

The role of countercations that do not bind to core nanocrystals (NCs) but rather ensure charge balance on ligand-exchanged NC surfaces has been rarely studied and even neglected. Such a scenario is unfortunate, as an understanding of surface chemistry has emerged as a key factor in overcoming colloidal NC limitations as catalysts. In this work, we report on the unprecedented role of countercations in ligand exchange for a colloidal transition metal dichalcogenide (TMD), WSe2, to tune the d-band center toward the Fermi level for enhanced hydrogen desorption. Conventional long-chain organic ligands, oleylamine, of WSe2 NCs are exchanged with short atomic S2- ligands having countercations to preserve the charge balance (WSe2/S2-/M+, M = Li, Na, K). Upon exchange with S2- ligands, the charge-balancing countercations are intercalated between WSe2 layers, thereby serving a unique function as an electrochemical hydrogen evolution reaction (HER) catalyst. The HER activity of ligand-exchanged colloidal WSe2 NCs shows a decrease in overpotential by down-shift of d-band center to induce more electron-filling in antibonding orbital and an increase in the electrochemical active surface area (ECSA). Exchanging surface functionalities with S2- anionic ligands enhances HER kinetics, while the existence of intercalated countercations improves charge transfer with the electrolyte. The obtained results suggest that both anionic ligands and countercationic species in ligand exchange must be considered to enhance the overall catalytic activity of colloidal TMDs.

10.
Nanoscale ; 13(2): 1291-1302, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33409525

ABSTRACT

Controlling surface energies of each facet is essential for the anisotropic growth of two-dimensional transition metal chalcogenides (TMCs). However, it is a challenge due to stronger binding energies of ligand head groups to the edge facets compared to the planar facets. Herein, we demonstrate that the adsorption of ligands on metal positions can induce partial electron localization on the chalcogen sites, and then accelerate metal-chalcogen bond formation for enhanced anisotropic growth of nanosheets. And only in the case of trioctylphosphine oxide (TOPO)-adsorbed nanosheets, surface polarization can be unveiled on the surface of the colloidal nanosheets due to restricted development of nonpolar ligand shells by the steric effects of the ligands. Moreover, density functional theory (DFT) calculation results reveal that the decrease of surface energy on the (100) edge facets as well as the increase on the (001) basal facets by the adsorption of triorganylphosphine oxide also contribute to the preferentially lateral growth. As a result, various 2D TMCs, including MoSe2, WSe2, and SnSe2 synthesized with TOPO, show enhanced anisotropic growth.

11.
ACS Nano ; 14(2): 1715-1726, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-31990522

ABSTRACT

Effective charge separation and rapid transport of photogenerated charge carriers without self-oxidation in transition metal dichalcogenide photocatalysts are required for highly efficient and stable hydrogen generation. Here, we report that a molecular junction as an electron transfer path toward two-dimensional rhenium disulfide (2D ReS2) nanosheets from zero-dimensional titanium dioxide (0D TiO2) nanoparticles induces high efficiency and stability of solar hydrogen generation by balanced charge transport of photogenerated charge carriers. The molecular junctions are created through the chemical bonds between the functionalized ReS2 nanosheets (e.g., -COOH groups) and -OH groups of two-phase TiO2 (i.e., ReS2-C6H5C(═O)-O-TiO2 denoted by ReS2-BzO-TiO2). This enhances the chemical energy at the conduction band minimum of ReS2 in ReS2-BzO-TiO2, leading to efficiently improved hydrogen reduction. Through the molecular junction (a Z-scheme charge transfer path) in ReS2-BzO-TiO2, recombination of photogenerated charges and self-oxidation of the photocatalyst are restrained, resulting in a high photocatalytic activity (9.5 mmol h-1 per gram of ReS2 nanosheets, a 4750-fold enhancement compared to bulk ReS2) toward solar hydrogen generation with high cycling stability of more than 20 h. Our results provide an effective charge transfer path of photocatalytic TMDs by preventing self-oxidation, leading to increases in photocatalytic durability and a transport rate of the photogenerated charge carriers.

12.
Small ; 15(28): e1901183, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31136092

ABSTRACT

Highly conductive molecular wires are an important component for realizing molecular electronic devices and have to be explored in terms of interactions between molecules and electrodes in their molecular junctions. Here, new molecular wire junctions are reported to enhance charge transport through gold nanoparticle (AuNP)-linked double self-assembled monolayers (SAMs) of cobalt (II) bis-terpyridine molecules (e.g., Co(II)(tpyphS)2 ). Electrical characteristics of the double-SAM devices are explored in terms of the existence of AuNP. The AuNP linker in the Co(II)(tpyphS)2 -AuNP-Co(II)(tpyphS)2 junction acts as an electronic contact that is transparent to electrons. The weak temperature dependency of the AuNP-linked molecular junctions strongly indicates sequential tunneling conduction through the highest occupied molecular orbitals (HOMOs) of Co(II)(tpyphS)2 molecules. The electrochemical characteristics of the AuNP-Co(II)(tpyphS)2 SAMs reveal fast electron transfer through molecules linked by AuNP. Density functional theory calculations reveal that the molecular HOMO levels are dominantly affected by the formation of junctions. The intermolecular charge transport, controlled by the AuNP linker, can provide a rational design for molecular connection that achieves a reliable electrical connectivity of molecular electronic components for construction of molecular electronic circuits.

13.
ACS Nano ; 11(12): 12832-12839, 2017 12 26.
Article in English | MEDLINE | ID: mdl-29182846

ABSTRACT

Thin-film transistors (TFTs) have received great attention for their use in lightweight, large area, and wearable devices. However, low crystalline materials and inhomogeneous film formation limit the realization of high-quality electrical properties for channels in commercial TFTs, especially for flexible electronics. Here, we report a field-effect TFT fabricated via cross-linking of edge-1T basal-2H MoS2 sheets that are prepared by edge functional exfoliation of bulk MoS2 with soft organic exfoliation reagents. For edge functional exfoliation, the electrophilic 4-carboxy-benzenediazonium used as the soft organic reagent attacks the nucleophilic thiolates exposed at the edge of the bulk MoS2 with the help of an amine catalyst, resulting in 1T edge-functional HOOC-benzene-2H basal MoS2 nanosheets (e-MoS2). The cross-linking via hydrogen bonding of the negatively charged HOOC of the e-MoS2 sheets with the help of a cationic polymer, polydiallyldimethylammonium chloride, results in a good film formation for a channel of the solution processing TFT. The TFT exhibits an extremely high mobility of 170 cm2/(V s) at 1 V (on/off ratio of 106) on SiO2/Si substrate and also a high mobility of 36.34 cm2/(V s) (on/off ratio of 103) on PDMS/PET substrate.

14.
Angew Chem Int Ed Engl ; 56(40): 12122-12126, 2017 09 25.
Article in English | MEDLINE | ID: mdl-28791791

ABSTRACT

Information processing using molecular junctions is becoming more important as devices are miniaturized to the nanoscale. Herein, we report functional molecular junctions derived from double self-assembled monolayers (SAMs) intercalated between soft graphene electrodes. Newly assembled molecular junctions are fabricated by placing a molecular SAM/(top) electrode on another molecular SAM/(bottom) electrode by using a contact-assembly technique. Double SAMs can provide tunneling conjugation across the van der Waals gap between the terminals of each monolayer and exhibit new electrical functions. Robust contact-assembled molecular junctions can act as platforms for the development of equivalent contact molecular junctions between top and bottom electrodes, which can be applied independently to different kinds of molecules to enhance either the structural complexity or the assembly properties of molecules.

15.
Nanoscale ; 9(11): 3969-3979, 2017 Mar 17.
Article in English | MEDLINE | ID: mdl-28266680

ABSTRACT

A major challenge in the development of electrocatalysts is to determine a detailed catalysis mechanism on a molecular level for enhancing catalytic activity. Here, we present bottom-up studies for an electrocatalytic hydrogen evolution reaction (HER) process through molecular activation to systematically control surface catalytic activity corresponding to an interfacial charge transfer in a porphyrin monolayer on inactive graphene. The two-dimensional (2D) assembly of porphyrins that create homogeneous active sites (e.g., electronegative tetrapyrroles (N4)) on graphene showed structural stability against electrocatalytic reactions and enhanced charge transfer at the graphene-liquid interface. Performance operations of the graphene field effect transistor (FET) were an effective method to analyse the interfacial charge transfer process associated with information about the chemical nature of the catalytic components. Electronegative pristine porphyrin or Pt-porphyrin networks, where intermolecular hydrogen bonding functioned, showed larger interfacial charge transfers and higher HER performance than Ni-, or Zn-porphyrin. A process to create surface electronegativity by either central N4 or metal (M)-N4 played an important role in the electrocatalytic reaction. These findings will contribute to an in-depth understanding at the molecular level for the synergetic effects of molecular structures on the active sites of electrocatalysts toward HER.

16.
Nanoscale ; 8(38): 17022-17029, 2016 Sep 29.
Article in English | MEDLINE | ID: mdl-27714139

ABSTRACT

Synthesis of graphene nanostructures has been investigated to provide outstanding properties for various applications. Herein, we report molecular thin film-assisted growth of graphene into nanofeatures such as nanoribbons and nanoporous sheets along with a predetermined molecular orientation on dielectric substrates without metal catalysts. A Langmuir-Blodgett (LB) method was used for the formation of the molecularly patterned SiO2 substrates with ferric stearate layers, which acted as a template for the directional growth of the polypyrrole graphene precursor. The nanofeatures of the graphene were determined by the number of ferric stearate layers (e.g., nanoribbons from multiple layers and nanoporous sheets from a single layer). The graphene nanoribbons (GNRs) containing pyrrolic N enriched edges exhibited a p-type semiconducting behavior, whereas the nanoporous graphene sheets containing inhomogeneous pores and graphitic N enriched basal planes exhibited the typical electronic transport of nitrogen-doped graphene. Our approaches provide two central methods for graphene synthesis such as bottom-up and direct processes for the future development of graphene nanoelectronics.

17.
Int J Biol Macromol ; 82: 514-21, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26526170

ABSTRACT

A novel pullulanase gene, PulSS4, was identified from the gut microflora of Hermetia illucens by a function-based metagenome screening. The PulSS4 gene had an open reading frame of 4455 base pairs, and encoded a mature protein of 1484 amino acids, with a signal peptide sequence of 44 amino acids. The deduced amino acid sequence of PulSS4 gene showed 51% identity with that of the amylopullulanase of Amphibacillus xylanus, exhibiting no significant sequence homology to already known pullulanases. A conserved domain analysis revealed it to be a pullulanase type II with respective active sites at the N-terminal pullulanase and C-terminal amylase domain. PulSS4 was active in the temperature range of 10-50°C, with an optimum activity at 40°C. It was active in the pH range of 6.5-10.5, with optimum pH at 9.0, and retained more than 80% of its original activity in a broad pH range of 5-11 for 24h at 30°C. Also, PulSS4 was highly stable against many different chemical reagents, including 10% polar organic solvents and 1% non-ionic detergents. Overall, PulSS4 is expected to have the strong potential for application in biotechnological industries that require high activity at moderate temperature and alkaline conditions.


Subject(s)
Diptera/microbiology , Gastrointestinal Microbiome , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Metagenome , Amino Acid Sequence , Animals , Enzyme Activation , Genomic Library , Glycoside Hydrolases/isolation & purification , Glycoside Hydrolases/metabolism , Hydrogen-Ion Concentration , Hydrolysis , Metagenomics , Molecular Sequence Data , Phylogeny , Protein Interaction Domains and Motifs , Recombinant Proteins , Starch/chemistry , Temperature
18.
J Microbiol Biotechnol ; 24(9): 1196-206, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25022521

ABSTRACT

A metagenomic fosmid library was constructed using genomic DNA isolated from the gut microflora of Hermetia illucens, a black soldier fly. A cellulase-positive clone, with the CS10 gene, was identified by extensive Congo-red overlay screenings for cellulase activity from the fosmid library of 92,000 clones. The CS10 gene was composed of a 996 bp DNA sequence encoding the mature protein of 331 amino acids. The deduced amino acids of CS10 showed 72% sequence identity with the glycosyl hydrolase family 5 gene of Dysgonomonas mossii, displaying no significant sequence homology to already known cellulases. The purified CS10 protein presented a single band of cellulase activity with a molecular mass of approximately 40 kDa on the SDS-PAGE gel and zymogram. The purified CS10 protein exhibited optimal activity at 50°C and pH 7.0, and the thermostability and pH stability of CS10 were preserved at the ranges of 20~50°C and pH 4.0~10.0. CS10 exhibited little loss of cellulase activity against various chemical reagents such as 10% polar organic solvents, 1% non-ionic detergents, and 0.5 M denaturing agents. Moreover, the substrate specificity and the product patterns by thinlayer chromatography suggested that CS10 is an endo-ß-1,4-glucanase. From these biochemical properties of CS10, it is expected that the enzyme has the potential for application in industrial processes.


Subject(s)
Cellulase/genetics , Diptera/genetics , Gastrointestinal Tract/microbiology , Metagenomics/methods , Amino Acid Sequence , Animals , Cellulase/chemistry , Cellulase/metabolism , Enzyme Stability , Gene Library , Hydrogen-Ion Concentration , Molecular Sequence Data , Phylogeny , Sequence Alignment , Temperature
19.
Adv Mater ; 26(30): 5129-36, 2014 Aug 13.
Article in English | MEDLINE | ID: mdl-24889833

ABSTRACT

A strong electrostatic MV(2+) -GQD nanocomposite provides an electrolyte-free flexible electrochromic device wih high durability. The positively charged MV(2+) and negatively charged GQD are strongly stabilized by non-covalent intermolecular forces (e.g., electrostatic interactions, π-π stacking interactions, and cation-π electron interactions), eliminating the need for an electrolyte. An electrolyte-free flexible electrochromic device fabricated from the GQD-supported MV(2+) exhibits stable performance under mechanical and thermal stresses.

20.
ACS Nano ; 8(5): 4580-90, 2014 May 27.
Article in English | MEDLINE | ID: mdl-24680354

ABSTRACT

Supercapacitors with porous carbon structures have high energy storage capacity. However, the porous nature of the carbon electrode, composed mainly of carbon nanotubes (CNTs) and graphene oxide (GO) derivatives, negatively impacts the volumetric electrochemical characteristics of the supercapacitors because of poor packing density (<0.5 g cm(-3)). Herein, we report a simple method to fabricate highly dense and vertically aligned reduced graphene oxide (VArGO) electrodes involving simple hand-rolling and cutting processes. Because of their vertically aligned and opened-edge graphene structure, VArGO electrodes displayed high packing density and highly efficient volumetric and areal electrochemical characteristics, very fast electrolyte ion diffusion with rectangular CV curves even at a high scan rate (20 V/s), and the highest volumetric capacitance among known rGO electrodes. Surprisingly, even when the film thickness of the VArGO electrode was increased, its volumetric and areal capacitances were maintained.

SELECTION OF CITATIONS
SEARCH DETAIL
...