Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-29081819

ABSTRACT

The cognitive effect of Artemisia argyi H. under liquid-state fermentation by Monascus purpureus (AAFM), which has cellular antioxidant activity and neuronal cell viability, on trimethyltin- (TMT-) induced learning and memory impairment in Institute of Cancer Research (ICR) mice was confirmed. Tests were conducted to determine the neuroprotective effects against H2O2-induced oxidative stress, and the results showed that AAFM has protective effects through the repression of mitochondrial injury and cellular membrane damage against H2O2-induced neurotoxicity. In animal experiments, such as the Y-maze, passive avoidance, and Morris water maze tests, AAFM also showed excellent ameliorating effects on TMT-induced cognitive dysfunction. After behavioral tests, brain tissues were extracted to assess damage to brain tissue. According to the experimental results, AAFM improved the cholinergic system by upregulating acetylcholine (ACh) contents and inhibiting acetylcholinesterase (AChE) activity. AAFM effectively improved the decline of the superoxide dismutase (SOD) level and the increase of the oxidized glutathione (GSH) ratio and lipid peroxidation (malondialdehyde (MDA) production) caused by TMT-induced oxidative stress. The occurrence of mitochondrial dysfunction and apoptosis was also decreased compared with the TMT group. Finally, quinic acid derivatives were identified as the major phenolic compounds in AAFM using ultra-performance liquid chromatography quadrupole-time-of-flight (UPLC-Q-TOF) MS analysis.

2.
Prev Nutr Food Sci ; 17(3): 184-91, 2012 Sep.
Article in English | MEDLINE | ID: mdl-24471082

ABSTRACT

The purpose of this study was to investigate the fatty acid profiles in 18 soybean cultivars grown in Korea. A total of eleven fatty acids were identified in the sample set, which was comprised of myristic (C14:0), palmitic (C16:0), palmitoleic (C16:1, ω7), stearic (C18:0), oleic (C18:1, ω9), linoleic (C18:2, ω6), linolenic (C18:3, ω3), arachidic (C20:0), gondoic (C20:1, ω9), behenic (C22:0), and lignoceric (C24:0) acids by gas-liquid chromatography with flame ionization detector (GC-FID). Based on their color, yellow-, black-, brown-, and green-colored cultivars were denoted. Correlation coefficients (r) between the nine major fatty acids identified (two trace fatty acids, myristic and palmitoleic, were not included in the study) were generated and revealed an inverse association between oleic and linoleic acids (r=-0.94, p<0.05), while stearic acid was positively correlated to arachidic acid (r=0.72, p<0.05). Principal component analysis (PCA) of the fatty acid data yielded four significant principal components (PCs; i.e., eigenvalues>1), which together account for 81.49% of the total variance in the data set; with PC1 contributing 28.16% of the total. Eigen analysis of the correlation matrix loadings of the four significant PCs revealed that PC1 was mainly contributed to by oleic, linoleic, and gondoic acids, PC2 by stearic, linolenic and arachidic acids, PC3 by behenic and lignoceric acids, and PC4 by palmitic acid. The score plots generated between PC1-PC2 and PC3-PC4 segregated soybean cultivars based on fatty acid composition.

3.
Biotechnol Prog ; 23(5): 1143-8, 2007.
Article in English | MEDLINE | ID: mdl-17711294

ABSTRACT

Vanillin production was tested with different concentrations of added ferulic acid in E. coli harboring plasmid pTAHEF containing fcs (feruloyl-CoA synthase) and ech (enoyl-CoA hydratase/aldolase) genes cloned from Amycolatopsis sp. strain HR104. The maximum production of vanillin from E. coli DH5alpha harboring pTAHEF was found to be 1.0 g/L at 2.0 g/L of ferulic acid for 48 h of culture. To improve the vanillin production by reducing its toxicity, two approaches were followed: (1) generation of vanillin-resistant mutant of NTG-VR1 through NTG mutagenesis and (2) removal of toxic vanillin from the medium by XAD-2 resin absorption. The vanillin production of NTG-VR1 increased to three times at 5 g/L of ferulic acid when compared with its wild-type strain. When 50% (w/v) of XAD-2 resin was employed in culture with 10 g/L of ferulic acid, the vanillin production of NTG-VR1 was 2.9 g/L, which was 2-fold higher than that obtained with no use of the resin.


Subject(s)
Acrylic Resins/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Genetic Enhancement/methods , Methylnitronitrosoguanidine/metabolism , Ultrafiltration/methods , Absorption , Mutagenesis, Site-Directed , Recombination, Genetic/physiology
5.
Biotechnol Lett ; 27(22): 1829-32, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16314978

ABSTRACT

E. coli was metabolically engineered to produce vanillin by expression of the fcs and ech genes from Amycolatopsis sp. encoding feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase, respectively. Vanillin production was optimized by leaky expression of the genes, under the IPTG-inducible trc promoter, in complex 2YT medium. Supplementation with glucose, fructose, galactose, arabinose or glycerol severely decreased vanillin production. The highest vanillin production of 1.1 g l(-1) was obtained with cultivation for 48 h in 2YT medium with 0.2% (w/v) ferulate, without IPTG and no supplementation of carbon sources.


Subject(s)
Actinomycetales/genetics , Aldehyde Oxidoreductases/metabolism , Benzaldehydes/isolation & purification , Benzaldehydes/metabolism , Enoyl-CoA Hydratase/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Genetic Enhancement/methods , Protein Engineering/methods , Actinomycetales/metabolism , Aldehyde Oxidoreductases/genetics , Enoyl-CoA Hydratase/genetics
6.
Int J Syst Evol Microbiol ; 52(Pt 2): 415-421, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11931150

ABSTRACT

A novel exopolysaccharide-producing bacterium (WN9T) was isolated from Chinju, Korea, and was identified as a member of the genus Paenibacillus on the basis of phenotypic characteristics and phylogenetic inference based on 16S rDNA sequence. This organism is a facultatively anaerobic, endospore-forming rod. The diamino acid found in the peptidoglycan is meso-diaminopimelic acid. The predominant menaquinone is MK-7. The major cellular fatty acid is anteiso-C15:0. The G+C content is 53 mol%. The phylogenetic tree shows that strain WN9T falls within the radiation of a cluster comprising the Paenibacillus species. The levels of 16S rDNA similarity between strain WN9T and the type strains of validly described Paenibacillus species are 92.1-95.8%. Strain WN9T is clearly distinguishable from some phylogenetically related Paenibacillus species on the basis of DNA-DNA relatedness data and phenotypic characters. Therefore, on the basis of these data, a novel species of the genus Paenibacillus, Paenibacillus chinjuensis sp. nov., is proposed. The type strain is strain WN9T (= KCTC 8951PT = JCM 10939T).


Subject(s)
Gram-Positive Endospore-Forming Rods/classification , Anaerobiosis , Bacillus/classification , Bacillus/metabolism , DNA, Bacterial/chemistry , Diaminopimelic Acid/analysis , Fatty Acids/analysis , Gram-Positive Endospore-Forming Rods/isolation & purification , Gram-Positive Endospore-Forming Rods/metabolism , Korea , Molecular Sequence Data , Peptidoglycan/chemistry , Phylogeny , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/chemistry , RNA, Ribosomal/chemistry , RNA, Ribosomal, 16S/chemistry , Sequence Homology, Nucleic Acid , Vitamin K 2/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...