Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Aging Neurosci ; 15: 1148444, 2023.
Article in English | MEDLINE | ID: mdl-37122380

ABSTRACT

Objective: Neuronata-R® (lenzumestrocel) is an autologous bone marrow-derived mesenchymal stem cell (BM-MSC) product, which was conditionally approved by the Korean Ministry of Food and Drug Safety (KMFDS, Republic of Korea) in 2013 for the treatment of amyotrophic lateral sclerosis (ALS). In the present study, we aimed to investigate the long-term survival benefits of treatment with intrathecal lenzumestrocel. Methods: A total of 157 participants who received lenzumestrocel and whose symptom duration was less than 2 years were included in the analysis (BM-MSC group). The survival data of placebo participants from the Pooled-Resource Open-Access ALS Clinical Trials (PROACT) database were used as the external control, and propensity score matching (PSM) was used to reduce confounding biases in baseline characteristics. Adverse events were recorded during the entire follow-up period after the first treatment. Results: Survival probability was significantly higher in the BM-MSC group compared to the external control group from the PROACT database (log-rank, p < 0.001). Multivariate Cox proportional hazard analysis showed a significantly lower hazard ratio for death in the BM-MSC group and indicated that multiple injections were more effective. Additionally, there were no serious adverse drug reactions found during the safety assessment, lasting a year after the first administration. Conclusion: The results of the present study showed that lenzumestrocel treatment had a long-term survival benefit in real-world ALS patients.

2.
Inorg Chem ; 60(18): 14151-14164, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34473480

ABSTRACT

While the incorporation of pendant Brønsted acid/base sites in the secondary coordination sphere is a promising and effective strategy to increase the catalytic performance and product selectivity in organometallic catalysis for CO2 reduction, the control of product selectivity still faces a great challenge. Herein, we report two new trans(Cl)-[Ru(6-X-bpy)(CO)2Cl2] complexes functionalized with a saturated ethylene-linked functional group (bpy = 2,2'-bipyridine; X = -(CH2)2-OH or -(CH2)2-N(CH3)2) at the ortho(6)-position of bpy ligand, which are named Ru-bpyOH and Ru-bpydiMeN, respectively. In the series of photolysis experiments, compared to nontethered case, the asymmetric attachment of tethering ligand to the bpy ligand led to less efficient but more selective formate production with inactivation of CO2-to-CO conversion route during photoreaction. From a series of in situ FTIR analyses, it was found that the Ru-formate intermediates are stabilized by a highly probable hydrogen bonding between pendent proton donors (-diMeN+H or -OH) and the oxygen atom of metal-bound formate (RuI-OCHO···H-E-(CH2)2-, E = O or diMeN+). Under such conformation, the liberation of formate from the stabilized RuI-formate becomes less efficient compared to the nontethered case, consequently lowering the CO2-to-formate conversion activities during photoreaction. At the same time, such stabilization of Ru-formate species prevents the dehydration reaction route (η1-OCHO → η1-COOH on Ru metal) which leads toward the generation of Ru-CO species (key intermediate for CO production), eventually leading to the reduction of CO2-to-CO conversion activity.

3.
Exp Mol Med ; 38(4): 445-52, 2006 Aug 31.
Article in English | MEDLINE | ID: mdl-16953124

ABSTRACT

We investigated the effect of tilianin upon inducible nitric oxide synthesis in the plasma of low-density lipoprotein receptor knock-out (Ldlr-/-) mice fed with high cholesterol diet and in primary peritoneal macrophages of Ldlr-/- mice. High cholesterol diet induced nitric oxide production in the plasma of Ldlr-/- mice. Tilianin reduced the level of nitric oxide (NO) in plasma from Ldlr-/- mice induced by the high cholesterol diet. Tilianin also inhibited the NO production from the primary culture of peritoneal macrophages treated with lipopolysaccharide. The inhibition of NO production was caused by the suppression of inducible nitric oxide synthase (iNOS) gene expression in peritoneal macrophages isolated from Ldlr-/- mice. Moreover, tilianin inhibited the transcriptional activation of iNOS promoter that has NF-kappaB binding element. Thus, these results provide the first evidence that tilianin inhibit iNOS expression and production of NO and may act as a potential anti-inflammatory agent.


Subject(s)
Flavonoids/pharmacology , Glycosides/pharmacology , Nitric Oxide Synthase Type II/metabolism , Receptors, LDL/genetics , Animals , Atherosclerosis/metabolism , Down-Regulation/drug effects , Inflammation/metabolism , Male , Mice , Mice, Knockout , NF-kappa B/metabolism , Nitric Oxide/biosynthesis , Nitric Oxide/blood , Promoter Regions, Genetic/drug effects , Sinus of Valsalva/metabolism , Sinus of Valsalva/pathology , Sinus of Valsalva/ultrastructure , Tissue Distribution , Tyrosine/analogs & derivatives , Tyrosine/metabolism
4.
Exp Mol Med ; 34(6): 481-8, 2002 Dec 31.
Article in English | MEDLINE | ID: mdl-12526091

ABSTRACT

To determine whether the PPARalpha agonist fenofibrate regulates obesity and lipid metabolism with sexual dimorphism, we examined the effects of fenofibrate on body weight, white adipose tissue (WAT) mass, circulating lipids, and the expression of PPARalpha target genes in both sexes of high fat diet-fed C57BL/6J mice. Both sexes of mice fed a high-fat diet for 14 weeks exhibited increases in body weight, visceral WAT mass, as well as serum triglycerides and cholesterol, although these effects were more pronounced among males. Feeding a high fat diet supplemented with fenofibrate (0.05% w/w) reduced all of these effects significantly in males except serum cholesterol level. Females on a fenofibrate-enriched high fat diet had reduced serum triglyceride levels, albeit to a smaller extent compared to males, but did not exhibit decreases in body weight, WAT mass, and serum cholesterol. Fenofibrate treatment resulted in hepatic induction of PPARalpha target genes encoding enzymes for fatty acid beta-oxidation, the magnitudes of which were much higher in males compared to females, as evidenced by results for acyl-CoA oxidase, a first enzyme of the beta-oxidation system. These results suggest that observed sexually dimorphic effects on body weight, WAT mass and serum lipids by fenofibrate may involve sexually related elements in the differential activation of PPARalpha.


Subject(s)
Fenofibrate/pharmacology , Lipid Metabolism , Obesity/metabolism , Receptors, Cytoplasmic and Nuclear/agonists , Sex Characteristics , Transcription Factors/agonists , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Animals , Body Composition/drug effects , Body Weight/drug effects , Diet , Dietary Fats/pharmacology , Female , Gene Expression Regulation/drug effects , Lipids/blood , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/pathology , Organ Size/drug effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...