Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(12)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35745413

ABSTRACT

We experimentally demonstrate the spectral blue shift of surface plasmon resonance through the resonant coupling between quantum dots (QDs) and surface plasmons, surprisingly in contrast to the conventionally observed red shift of plasmon spectroscopy. Multimode optical fibers are used for extended resonant coupling of surface plasmons with excited states of QDs adsorbed to the plasmonic metal surface. The long-lived nature of excited QDs permits QD-induced negative change in the local refractive index near the plasmonic metal surface to cause such a blue shift. The analysis utilizes the physical causality-driven optical dispersion relation, the Kramers-Kronig (KK) relation, attempting to understand the abnormal behavior of the QDs-induced index dispersion extracted from blue shift measurement. Properties of QDs' gain spectrally resonating with plasmons can account for such blue shift, though their absorbance properties never allow the negative index change for the blue shift observed according to the KK relation. We also discuss the limited applicability of the KK relation and possible QDs gain saturation for the experiment-theory disagreement. This work may contribute to the understanding of the photophysical properties critical for plasmonic applications, such as plasmonic local index engineering required in analyte labeling QDs coupled with plasmons for biomedical imaging or assay.

2.
Micromachines (Basel) ; 11(10)2020 Sep 27.
Article in English | MEDLINE | ID: mdl-32992442

ABSTRACT

C-reactive protein (CRP), a potent acute-phase reactant that increases rapidly in response to inflammation, tissue damage or infections, is also considered an indicator of the risk of cardiovascular diseases and neurological disorders. Recent advances in nanofabrication and nanophotonic technologies have prompted the optical plasmonic phenomena to be tailored for specific detection of human serum CRP into label-free devices. We review the CRP-specific detection platforms with high sensitivity, which feature the thin metal films for surface plasmon resonance, nano-enhancers of zero dimensional nanostructures, and metal nanoparticles for localized surface plasmon resonance. The protocols used for various types of assay reported in literature are also outlines with surface chemical pretreatment required for specific detection of CRPs on a plasmonic surface. Properties including sensitivity and detection range are described for each sensor device reviewed, while challenges faced by plasmonic CRP sensors are discussed in the conclusion, with future directions towards which research efforts need to be made.

SELECTION OF CITATIONS
SEARCH DETAIL
...