Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2401594, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860544

ABSTRACT

Defect engineering of metal-organic frameworks (MOFs) is a promising strategy for tailoring the interfacial characteristics between MOFs and polymers, aiming to create high-performance mixed matrix membranes (MMMs). This study introduces a new approach using dual defective alkylamine (AA)-modulated zeolitic imidazolate framework-8 (DAZIF-8), to develop high-flux MMMs. Tributylamine (TBA) and triethylamine (TEA) monodentate ligands coordinate with zinc ions in varying compositions. A mixture of Zn(CH3COO)2·2H2O:2-methylimidazole (Mim):AA in a 1:1.75:5 molar ratio facilitates high-yield coordination between Zn and multiple organic ligands, including Zn-Mim, Zn-TEA, and Zn-TBA (>80%). Remarkably, DAZIF-8 containing 3 mol% TBA and 2 mol% TEA exhibits exceptional characteristics, such as a Brunauer-Emmett-Teller surface area of 1745 m2 g-1 and enhanced framework rigidity. Furthermore, dual Zn-AA coordination sites on the framework's outer surface enhance compatibility with the polyimide (PI) matrix through electron donor-acceptor interactions, enabling the fabrication of high-loading MMMs with excellent mechanical durability. Importantly, the PI/DAZIF-8 (60/40 w/w) MMM demonstrates an unprecedented 759% enhancement in ethylene (C2H4) permeability (281 Barrer) with a moderate ethylene/ethane (C2H4/C2H6) selectivity of 2.95 compared to the PI, surpassing the polymeric upper limit for C2H4/C2H6 separation.

2.
Small Methods ; 6(10): e2200772, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36047652

ABSTRACT

Herein, a new approach for the in situ synthesis of zeolitic imidazolate framework (ZIF) nanoparticles with triple ligands, referred to as Sogang ZIF-8 (SZIF-8), is reported for enhanced C2 H4 /C2 H6 kinetic separation. SZIF-8 consists of tetrahedral zinc metals coordinated with tri-butyl amine (TBA), 2,4-dimethylimidazole (DIm), and 2-methylimidazole (MIm). SZIF-8(x) with different DIm contents in x (up to 23.2 mol%) are synthesized in situ because TBA preferably deprotonates DIm ligands due to the much lower pKa of DIm over MIm, allowing for the Zn-DIm coordination. The Zn-DIm coordination reduces the window size of ZIF-8 with suppressed linker flipping motion due to bulky DIm ligands and simultaneously enhances the interfacial interaction between 6FDA-DAM polyimide (6FDA) and SZIF-8 via electron donor-acceptor interactions. Consequently, 6FDA/SZIF-8(13) mixed matrix membrane exhibits an excellent C2 H4 permeability of 60.3 Barrer and C2 H4 /C2 H6 selectivity of 4.5. The temperature-dependent transport characterization reveals that such excellent C2 H4 /C2 H6 kinetic separation is attained by the enhancement in size discrimination-based energetic selectivity. Our hybrid multi-ligand approach can offer a useful tool for the fine-tuning of molecular structures and textural properties of other metal organic frameworks.

SELECTION OF CITATIONS
SEARCH DETAIL
...