Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 60(21): 16294-16302, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34623801

ABSTRACT

A comparative study of doping aliovalent ions, Zr- or Al-, into Ni-rich Li(Ni,Co,Mn)O2 cathode materials is conducted in terms of the electrochemical properties and chemical analysis, especially on the surface region. The solubility and chemical composition for the given sol-gel treatment matches well with the computational results with which the infinitesimal Zr-coating is identified as exhibiting increased charge capacity with prolonged cycle life. Specifically, the whole process can be understood by the suppressed lithium-ion charge transfer resistance (RCT) during the cycles, which can be facilitated by the decreased NiO formation during the cyclic reactions.

2.
Ultrason Sonochem ; 49: 13-23, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30056026

ABSTRACT

In the present study, we proposed an effective, efficient, and economical approach to disinfect water using a novel, advanced, rotational hydrodynamic cavitation reactor (HCR). First, analyses of the flow field and cavitation generation mechanism in the HCR were conducted through visualization of the reactor flow field using a high-speed camera. Second, the thermal performance was tested in 20 experiments with various rotational speeds of the rotor (2700, 3000, 3300, and 3600 rpm) and pump pressure settings (0.0, 0.5, 0.7, 1.0, and 1.5 bar gauge pressure). The HCR maximally achieved a heat generation rate of 48.15 MJ/h and thermal efficiency of 82.18%. Then, the disinfection effect was evaluated using water that simulated an effluent containing Escherichia coli (E. coli) for various flow rates (8, 11, and 14 L/min), a pump pressure setting fixed at 0.5 bar, and a rotational speed of 3600 rpm. In addition, an economical assessment of the disinfection processes was performed by considering the measured electric consumption. The thermal effect generated by the HCR was the dominant factor affecting the concentration of E. coli. The HCR achieved a 100% disinfection rate with a 4.3 L/min treatment rate and a cost of US $ 3.019/m3 at the optimal flow rate. The effects of the pressure setting and rotational speed on the performance were discussed in detail. Finally, compared to the recent studies, the treatment rate of the HCR is several hundred times greater than that obtained by the HCRs utilized in those studies, and also has a reasonable cost.


Subject(s)
Disinfection/instrumentation , Hydrodynamics , Temperature , Escherichia coli/physiology , Microbial Viability , Rotation
SELECTION OF CITATIONS
SEARCH DETAIL
...