Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-477037

ABSTRACT

A structural protein of SARS-CoV-2, nucleocapsid (N) protein is abundantly expressed during viral replication. The N protein is phosphorylated by glycogen synthase kinase (GSK)-3 on the serine/arginine (SR) rich motif located in disordered regions. Although phosphorylation by GSK-3{beta} constitutes a critical event for viral replication, the molecular mechanism underlying N phosphorylation is not well understood. In this study, we found the putative alpha-helix L/FxxxL/AxxRL motif known as the GSK-3 interacting domain (GID), commonly found in many endogenous GSK-3{beta} binding proteins, such as Axins, FRATs, WWOX and GSKIP. Indeed, N interacts with GSK-3{beta} similarly to Axin, and Leu to Glu substitution of the GID abolished the interaction, with loss of N phosphorylation. Unlike with endogenous GID proteins, the N interaction neither disturbs endogenous GSK-3 activity nor regulates subsequent canonical Wnt activity and the Snail-EMT program. Notably, N abundance in SARS-CoV-2 is incomparably high compared to other coronaviruses, such as 229E, OC43 and HKU1. Compared to other coronaviruses, N harbors a CDK1 primed phosphorylation site and Gly-rich linker for enhanced phosphorylation by GSK-3{beta}. Furthermore, we found that the S202R mutant found in Delta and R203K/G204R mutant found in the Omicron variant allows increased abundance and hyper-phosphorylation of N. Our observations suggest that the emergence of GID and mutations for increased phosphorylation in N may have contributed to the emergence of SARS-CoV-2 and evolution of variants, respectively. Further study, especially in a BSL3-equipped facility, is required to elucidate the functional importance of GID and N phosphorylation in SARS-CoV-2 and variants.

SELECTION OF CITATIONS
SEARCH DETAIL
...