Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 62(12): 2970-2977, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37133142

ABSTRACT

A study on the classification of copper concentrates relevant to the copper refining industry is performed by means of reflectance hyperspectral images in the visible and near infrared (VIS-NIR) bands (400-1000 nm) and in the short-wave infrared (SWIR) (900-1700 nm) band. A total of 82 copper concentrate samples were press compacted into 13-mm-diameter pellets, and their mineralogical composition was characterized via quantitative evaluation of minerals and scanning electron microscopy. The most representative minerals contained in these pellets are bornite, chalcopyrite, covelline, enargite, and pyrite. Three databases (VIS-NIR, SWIR, and VIS-NIR-SWIR) containing a collection of average reflectance spectra computed from 9×9p i x e l neighborhoods in each pellet hyperspectral image are compiled to train the classification models. The classification models tested in this work are a linear discriminant classifier and two non-linear classifiers, a quadratic discriminant classifier, and a fine K-nearest neighbor classifier (FKNNC). The results obtained show that the joint use of VIS-NIR and SWIR bands allows for the accurate classification of similar copper concentrates that contain only minor differences in their mineralogical composition. Specifically, among the three tested classification models, the FKNNC performs the best in terms of overall classification accuracy, achieving 93.4% accuracy in the test set when only VIS-NIR data are used to construct the classification model, up to 80.5% using only SWIR data, and up to 97.6% using both VIS-NIR and SWIR bands together.

2.
Anal Chim Acta ; 1178: 338805, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34482864

ABSTRACT

The development of real-time monitoring sensors for pyro-metallurgical processes is an analytical challenge, mainly due to adverse environmental conditions, high spectral interferences and multiphase (molten and gas) reactions. This work demonstrates the suitability of stand-off LIBS (ST-LIBS) for real time monitoring of the desulfurization of blister copper which is carried out in molten phase. Here sulfur is removed by the formation of SO2 by supplying oxygen in molten phase. Using ST-LIBS the relative emission intensities of Cu(I) at 351.06 nm, O at 777.34 nm and S at 921.29 nm in both molten and gaseous phase were considered simultaneously during the process. This was possible only by the use high energy laser pulse over up to 270 mJ per pulse. In the case of copper, the selection of emission lines was assessed considering non-linear behavior, which is caused by self-absorption. For the first time, real time determination of sulfur in ppm range is reported by ST-LIBS using low sensitive lines from the NIR region. These results were validated with differential optical absorption spectroscopy (DOAS) as gold standard method. The analytical information obtained by LIBS can precisely determine the critical end-point of the desulfurization where the removal of sulfur is finished, and copper started to oxidize.


Subject(s)
Blister , Copper , Humans , Lasers , Spectrum Analysis , Sulfur
3.
Biochim Biophys Acta Biomembr ; 1861(6): 1078-1085, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30904408

ABSTRACT

Donepezil is used to treat symptomatically the Alzheimer's disease (AD). This drug is a specific inhibitor of the enzyme acetylcholinesterase (AChE), whose main physiological function is to hydrolyze the neurotransmitter acetylcholine. The main objective of this work was to study the effect of donepezil on human erythrocytes as AChE is present in its membrane. For this purpose, human erythrocytes and molecular model of its membrane built-up of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) were used. The latter correspond to classes of phospholipids present in the outer and inner monolayers of the human erythrocyte membrane, respectively. Our experimental evidences obtained from X-ray diffraction and differential scanning calorimetry (DSC) analysis indicated that donepezil was capable of interacting with both phospholipids. Fluorescence spectroscopy results showed a moderate increase in the fluidity of the hydrophobic tails of DMPC and isolated unsealed human erythrocyte membranes (IUM). On the other hand, results by scanning electron microscopy (SEM) and optical defocusing microscopy (DM) showed that the drug changed the normal biconcave shape of the erythrocytes inducing the formation of stomatocytes (cup-shaped cells). This effect was explained by the incorporation of donepezil molecules into the erythrocyte membrane and interactions with AChE.


Subject(s)
Acetylcholinesterase/drug effects , Alzheimer Disease/drug therapy , Cholinesterase Inhibitors/pharmacology , Donepezil/pharmacology , Erythrocytes/drug effects , Nootropic Agents/pharmacology , Cholinesterase Inhibitors/therapeutic use , Dimyristoylphosphatidylcholine/metabolism , Donepezil/therapeutic use , Erythrocyte Membrane/drug effects , Erythrocyte Membrane/metabolism , Humans , Nootropic Agents/therapeutic use , Phosphatidylethanolamines/metabolism
4.
Arch Biochem Biophys ; 665: 30-35, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30796890

ABSTRACT

The human red blood cell (RBC) membrane has significant elastic capabilities which can be described measuring typical membrane edge fluctuations and mechanical properties by optical techniques. The RBC elastic properties can be affected by changes in the surrounding media. In an attempt to elucidate the molecular mechanisms of the interaction of resveratrol with the red cell membrane and of its antioxidant capacity the changes in mechanical properties of the RBC membrane were analyzed. These studies were carried out through measurements of RBC membrane fluctuations in the presence of the oxidant agent HClO using thermal fluctuation spectroscopy (TFS). The observed results showed that the elastic capabilities of RBC changed with low concentration of hypochlorous acid but without morphological changes. However, in the presence of resveratrol the deformation and decrease of elastic capabilities induced by HClO on RBC decreased. These in vitro results demonstrated the protective effect of RV against the detrimental effects triggered by HClO upon human erythrocytes.


Subject(s)
Antioxidants/metabolism , Erythrocytes/metabolism , Resveratrol/blood , Spectrum Analysis/methods , Erythrocyte Membrane/metabolism , Humans , Hypochlorous Acid/metabolism , Single-Cell Analysis
5.
J Membr Biol ; 249(6): 769-779, 2016 12.
Article in English | MEDLINE | ID: mdl-27568391

ABSTRACT

Gallic acid (GA) is a polyphenol present in many plants. This study was aimed to investigate the molecular interaction of GA with the human erythrocyte membrane and to determine its antioxidant capacity. The molecular interaction with the membrane of human red cells and the antioxidant property was assayed on both human red cells and molecular models of its membrane. Observations by optical, scanning electron, and defocusing microscopy demonstrated that GA is capable to convert red cells from their normal biconcave shape to crenated echinocytes. This result indicates that GA molecules are positioned in the outer monolayer of the red cell membrane. Dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE) were selected as classes of phospholipids found in the outer and inner monolayers of the red cell membrane, respectively. X-ray diffraction and differential scanning calorimetry showed that GA was preferentially bound to DMPC bilayers. Experiments related to the antioxidant capacity of GA indicated that this compound offsets HClO oxidative capacity on DMPE bilayers. In addition, optical, scanning, defocusing microscopy, and hemolysis assays confirmed the protective capacity of GA against HClO deleterious effects on human red cells. As a conclusion, GA would be capable to block the access of oxidants into the lipid bilayer, and thus avoid their access into red cells.


Subject(s)
Antioxidants/pharmacology , Erythrocytes/drug effects , Erythrocytes/metabolism , Gallic Acid/pharmacology , Antioxidants/chemistry , Calorimetry, Differential Scanning , Cells, Cultured , Erythrocyte Membrane/drug effects , Erythrocyte Membrane/metabolism , Erythrocytes/ultrastructure , Gallic Acid/chemistry , Hemolysis/drug effects , Humans , Lipid Bilayers , Molecular Structure , Phospholipids , Thermodynamics , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...