Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
IBRO Neurosci Rep ; 16: 127-134, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38288135

ABSTRACT

Purpose: During the course of demyelinating inflammatory diseases, myelin-derived proteins, including myelin basic protein(MBP), are secreted into extracellular space. MBP shows extensive post-translational modifications, including deimination/citrullination. Deiminated MBP is structurally less ordered, susceptible to proteolytic attack, and more immunogenic than unmodified MBP. This study investigated the effect of the deiminated/citrullinated isomer of MBP(C8) and the unmodified isomer of MBP(C1) on cultured primary astrocytes. Methods: MBP charge isomers were isolated/purified from bovine brain. Primary astrocyte cultures were prepared from the 2-day-old Wistar rats. For evaluation of glutamate release/uptake a Fluorimetric glutamate assay was used. Expression of peroxisome proliferator-activated receptor-gamma(PPAR-γ), excitatory amino acid transporter 2(EAAT2), the inhibitor of the nuclear factor kappa-B(ikB) and high mobility group-B1(HMGB1) protein were assayed by Western blot analysis. IL-17A expression was determined in cell medium by ELISA. Results: We found that MBP(C8) and MBP(C1) acted differently on the uptake/release of glutamate in astrocytes: C1 increased glutamate uptake and did not change its release, whereas C8 decreased glutamate release but did not change its uptake. Both isomers increased the expression of PPAR-γ and EAAT2 to the same degree. Western blots of cell lysates revealed decreased expression of ikB and increased expression of HMGB1 proteins after treatment of astrocytes by C8. Moreover, C8-treated cells released more nitric oxide and proinflammatory IL-17A than C1-treated cells. Conclusions: These data suggest that the most immunogenic deiminated isomer C8, in parallel to the decreases in glutamate release, elicits an inflammatory response and enhances the secretion of proinflammatory molecules via activation of nuclear factor kappa B(NF-kB). Summary statement: The most modified-citrullinated myelin basic protein charge isomer decreases glutamate release, elicits an inflammatory response and enhances the secretion of proinflammatory molecules via activation of nuclear factor kappa B in astrocytes.

2.
J Inflamm Res ; 12: 25-33, 2019.
Article in English | MEDLINE | ID: mdl-30774410

ABSTRACT

PURPOSE: During a neuronal injury, a variety of immune cells infiltrate into the local microenvironment at the demyelination site. After the destruction of the intact myelin sheath, its major constituent myelin basic protein (MBP) dissociates from the plasma membrane and acts as a free ligand on the infiltrated immune cells. MBP exhibits charge microheterogeneity as a result of post-translational modifications, but the effect of various isomers of MBP on the activity of macrophages is not known. MATERIALS AND METHODS: MBP was isolated and purified from bovine brain white matter. RAW 264.7 macrophages were cultured in DMEM supplemented with heat-inactivated fetal bovine serum. For evaluation of macrophage polarization following treatment of RAW 264.7 cells with MBP charge isomers, inducible nitric oxide synthase (iNOS) expression (M1 phenotype marker) and arginase-1 expression (M2 phenotype marker) were determined in cell lysates by ELISA. To assess Rac activity, G-LISA Rac Activation Assay system was used. The expression of receptor for advanced glycation end-products (RAGE) and high mobility group box 1 (HMGB1) protein were assayed by Western blot analysis. RESULTS: Our results have shown that minimally modified C1 component of MBP increases the expression of arginase-1 in cells, decreases the expression of iNOS, does not change the secretion of HMGB1 protein, but significantly elevates surface expression of RAGE, and in parallel, increases the activity of small GTPase Rac. On the other hand, highly modified deiminated isomer C8-MBP increases the secretion of HMGB1 protein but does not change the expression of arginase-1 or the content of RAGE. CONCLUSION: These data indicate that deiminated C8 isomer of MBP tends to polarize RAW macrophages into M1 phenotypes, whereas C1 enhances the activity of M2 phenotype markers.

3.
Nat Prod Commun ; 11(12): 1833-1838, 2016 Dec.
Article in English | MEDLINE | ID: mdl-30508345

ABSTRACT

Nobiletin is an 0-methylated flavonoid found in citrus peels that have anticancer, antiviral, neuroprotective; anti-inflammatory activities and depending on the cell types exhibits both pro- or anti-apoptotic properties We have found that nobiletin decreases oxygen consumption by bovine brain isolated mitochondria in the presence of glutamate and malate and increases in the presence of succinate. In paralleli nobiletin increases NADH: oxidation, a-ketoghitarate dehydrogenase activities and through matrix substrate-level phosphorylation elevates the a-ketoglutarate-dependent-production-of ATP. In addition, nobiletin reduces the production of peroxides in the presence of complex I substrates and slightly enhances succinate-driven H(2)0(2) formation. Besides, nobiletin induces transient elevation of membrane potential followed by mild depolarization. Affinity purified, nobiletin binding proteins revealed one major anti-NDUFVl positive protein with 52kD and NADH: ubiquinone oxidoreductase activity. This fraction can produce peroxide that is inhibited by nobiletin. We propose that nobiletin may act as a mild "uncoupler", which through activation of a-ketoglutarate dehydrogenase (a-KGDH)-complex and acceleration of matrix substrate-level phosphorylation maintains membrane potential at an abnormal level. This switch in mitochondrial metabolism could elevate succinate-driven oxygen consumption that may underlay in both pro- and anti-apoptotic effects of nobiletin.


Subject(s)
Flavones/pharmacology , Mitochondria/drug effects , Adenosine Triphosphate/metabolism , Animals , Brain/physiology , Cattle , Electron Transport Complex I/metabolism , Hydrogen Peroxide/metabolism , Ketoglutarate Dehydrogenase Complex/metabolism , Membrane Potential, Mitochondrial/drug effects , Mitochondria/physiology , Oxygen Consumption
4.
Neurosci Res ; 2009 Oct 09.
Article in English | MEDLINE | ID: mdl-19819578

ABSTRACT

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.

SELECTION OF CITATIONS
SEARCH DETAIL
...