Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters











Publication year range
1.
J Pharm Sci ; 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39374693

ABSTRACT

The refined Developability Classification System (rDCS) provides a comprehensive animal-free approach for assessing biopharmaceutical risks associated with developing oral formulations. This work demonstrates practical application of a recently advanced rDCS framework guiding formulation design for six diverse active pharmaceutical ingredients (APIs) and compares rDCS classifications with those of the Biopharmaceutics Classification System (BCS). While the BCS assigns five of the APIs to class II/IV, indicating potentially unfavorable biopharmaceutical attributes, the rDCS provides a more nuanced risk assessment. Both BCS and rDCS assign acetaminophen to class I at therapeutic doses. Voriconazole and lemborexant (both BCS II) are classified in rDCS class I at therapeutic doses, indicating suitability for development as conventional oral formulations. Fedratinib is classified as BCS IV but the rDCS indicates a stratified risk (class I, IIa or IIb), depending on the relevance of supersaturation/precipitation in vivo. Voxelotor and istradefylline (both BCS II) belong to rDCS class IIb, requiring solubility enhancement to achieve adequate oral bioavailability. Comparing the rDCS analysis with literature on development and pharmacokinetics demonstrates that the rDCS reliably supports oral formulation design over a wide range of API characteristics, thus providing a strong foundation for guiding development.

2.
Mol Pharm ; 21(10): 5261-5271, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39267585

ABSTRACT

Aqueous solubility is one of the most important physicochemical properties of drug molecules and a major driving force for oral drug absorption. To date, the performance of in silico models for the estimation of solubility for novel chemical space is limited. To investigate possible reasons and remedies for this, the Johnson and Johnson in-house aqueous solubility data with over 40,000 compounds was leveraged. All data were generated through the same high-throughput assay, providing a unique opportunity to explore the relationship between data quality, quantity, and model estimations. Six intrinsic solubility data sets with different sizes and noise levels were generated by making use of three different approaches: (i) inclusion or exclusion of amorphous solid residue, (ii) measured or experimental log D to identify the intrinsic solubility, and (iii) adopting or omitting a quality check process in the data processing workflow. A random forest regressor was trained on the data sets with three different sets of descriptors calculated from RDKit, ADMET predictor, or Mordred, and the performances were evaluated with nested cross-validation as well as ten refined test sets. The models confirm, as expected, that with the same data set size, high-quality data leads to better model performance; however, also, models trained with larger data sets containing analytical variability can give equally accurate estimations compared to models trained with small, clean, and diverse data sets. However, noise introduced by including the presence of amorphous solid postsolubility measurement in the training data set cannot be overcome by increasing data size, as they are introducing a biased systematic positive error in the data set, confirming the importance of critical data review. Finally, two top-performing models were tested on the first test set from the second solubility challenge, achieving RMSE values of 0.74 and 0.72 and log S ± 0.5 of 46 and 48%, respectively. These results demonstrated improved performance compared to those reported in the findings of the competition, highlighting that a single-source curated data set can enhance the prediction of intrinsic solubility.


Subject(s)
Solubility , Data Accuracy , Computer Simulation , Pharmaceutical Preparations/chemistry
3.
J Pharm Sci ; 113(9): 2940-2946, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38908795

ABSTRACT

Supersaturation and precipitation within the gastrointestinal tract can influence oral absorption of active pharmaceutical ingredients (APIs). Supersaturation of weakly basic APIs upon transfer from the stomach into the small intestine may enhance their absorption, while salt forms of poorly soluble weak acids may generate supersaturated solutions in both stomach and intestine. Likewise, APIs with solubility-limited absorption may be developed as enabling formulations intended to produce supersaturated solutions of the API in the gut. Integrating the supersaturation/precipitation characteristics of the API into the biopharmaceutical risk classification enables comprehensive mapping of potential developability risks and guides formulation selection towards optimizing oral bioavailability (BA). The refined Developability Classification System (rDCS) provides an approach for this purpose. In this work, the rDCS strategy is revisited and a stratified approach integrating the in vitro supersaturation and precipitation behavior of APIs and their formulations is proposed.


Subject(s)
Biological Availability , Chemical Precipitation , Solubility , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/classification , Chemistry, Pharmaceutical/methods , Administration, Oral , Humans , Drug Compounding/methods , Intestinal Absorption
4.
Pharmaceutics ; 15(7)2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37514095

ABSTRACT

Dissolution limitations to oral absorption can occur if the time required for dissolution is longer than the transit time across the small intestine and/or if dissolution is slower than the drug's permeation through the gut wall. These limitations most often occur for poorly soluble drugs. A standard method for overcoming dissolution issues is to reduce the particle size of the (solid) drug. Building on the refined Developability Classification System (rDCS), this work establishes a novel set of equations with which the appropriate degree of particle size reduction needed to mitigate dissolution limitations to absorption can be calculated. According to the type of data available, the appropriate equation(s) for each situation can be applied. Three case examples are used to illustrate implementation of the equations: voriconazole, lemborexant and istradefylline. Although for voriconazole (rDCS Class I) target radius (rtarget) estimates indicate that particle size reduction is unnecessary, for lemborexant (rDCS Class I) a radius of ≤20 µm would be required to improve absorption. For istradefylline (rDCS Class IIb) the rtarget was approximately 12 µm. Results are commensurate with literature information for these three drugs, signaling that the equations are suitable for application to a wide variety of drug substances.

5.
J Med Chem ; 65(21): 14326-14336, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36314537

ABSTRACT

Bruton's tyrosine kinase (BTK) is a Tec family kinase that plays an essential role in B-cell receptor (BCR) signaling as well as Fcγ receptor signaling in leukocytes. Pharmacological inhibition of BTK has been shown to be effective in treating hematological malignancies and is hypothesized to provide an effective strategy for the treatment of autoimmune diseases such as rheumatoid arthritis and systemic lupus erythematosus. We report the discovery and preclinical properties of JNJ-64264681 (13), a covalent, irreversible BTK inhibitor with potent whole blood activity and exceptional kinome selectivity. JNJ-64264681 demonstrated excellent oral efficacy in both cancer and autoimmune models with sustained in vivo target coverage amenable to once daily dosing and has advanced into human clinical studies to investigate safety and pharmacokinetics.


Subject(s)
Arthritis, Rheumatoid , Autoimmune Diseases , Lupus Erythematosus, Systemic , Humans , Agammaglobulinaemia Tyrosine Kinase , Protein Kinase Inhibitors/therapeutic use , Arthritis, Rheumatoid/drug therapy , Autoimmune Diseases/drug therapy , Lupus Erythematosus, Systemic/drug therapy
6.
J Med Chem ; 63(17): 9181-9196, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32787105

ABSTRACT

Selective inhibitors of the GluN2B subunit of N-methyl-d-aspartate receptors in the ionotropic glutamate receptor superfamily have been targeted for the treatment of mood disorders. We sought to identify structurally novel, brain penetrant, GluN2B-selective inhibitors suitable for evaluation in a clinical setting in patients with major depressive disorder. We identified a new class of negative allosteric modulators of GluN2B that contain a 1,3-dihydro-imidazo[4,5-b]pyridin-2-one core. This series of compounds had poor solubility properties and poor permeability, which was addressed utilizing two approaches. First, a series of structural modifications was conducted which included replacing hydrogen bond donor groups. Second, enabling formulation development was undertaken in which a stable nanosuspension was identified for lead compound 12. Compound 12 was found to have robust target engagement in rat with an ED70 of 1.4 mg/kg. The nanosuspension enabled sufficient margins in preclinical toleration studies to nominate 12 for progression into advanced good laboratory practice studies.


Subject(s)
Antipsychotic Agents/chemical synthesis , Drug Design , Imidazoles/chemistry , Pyridines/chemistry , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Allosteric Regulation , Animals , Antipsychotic Agents/pharmacokinetics , Antipsychotic Agents/therapeutic use , Brain/metabolism , Dogs , Drug Evaluation, Preclinical , Half-Life , Humans , Imidazoles/pharmacokinetics , Imidazoles/therapeutic use , Male , Mood Disorders/drug therapy , Mood Disorders/pathology , Nanostructures/chemistry , Permeability/drug effects , Pyridines/pharmacokinetics , Pyridines/therapeutic use , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism , Solubility , Structure-Activity Relationship
7.
J Med Chem ; 61(1): 207-223, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29211470

ABSTRACT

A single pot dipolar cycloaddition reaction/Cope elimination sequence was developed to access novel 1,4,6,7-tetrahydro-5H-[1,2,3]triazolo[4,5-c]pyridine P2X7 antagonists that contain a synthetically challenging chiral center. The structure-activity relationships of the new compounds are described. Two of these compounds, (S)-(2-fluoro-3-(trifluoromethyl)phenyl)(1-(5-fluoropyrimidin-2-yl)-6-methyl-1,4,6,7-tetrahydro-5H-[1,2,3]triazolo[4,5-c]pyridin-5-yl)methanone (compound 29) and (S)-(3-fluoro-2-(trifluoromethyl)pyridin-4-yl)(1-(5-fluoropyrimidin-2-yl)-6-methyl-1,4,6,7-tetrahydro-5H-[1,2,3]triazolo[4,5-c]pyridin-5-yl)methanone (compound 35), were found to have robust P2X7 receptor occupancy at low doses in rat with ED50 values of 0.06 and 0.07 mg/kg, respectively. Compound 35 had notable solubility compared to 29 and showed good tolerability in preclinical species. Compound 35 was chosen as a clinical candidate for advancement into phase I clinical trials to assess safety and tolerability in healthy human subjects prior to the initiation of proof of concept studies for the treatment of mood disorders.


Subject(s)
Drug Design , Purinergic P2X Receptor Antagonists/chemical synthesis , Purinergic P2X Receptor Antagonists/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology , Receptors, Purinergic P2X7/metabolism , Animals , Cycloaddition Reaction , Dogs , Humans , Male , Mice , Models, Molecular , Molecular Conformation , Purinergic P2X Receptor Antagonists/chemistry , Purinergic P2X Receptor Antagonists/pharmacokinetics , Pyridines/chemistry , Pyridines/pharmacokinetics , Rats , Stereoisomerism , Tissue Distribution
8.
J Med Chem ; 59(18): 8535-48, 2016 09 22.
Article in English | MEDLINE | ID: mdl-27548392

ABSTRACT

The synthesis and SAR of a series of 4,5,6,7-tetrahydro-imidazo[4,5-c]pyridine P2X7 antagonists are described. Addressing P2X7 affinity and liver microsomal stability issues encountered with this template afforded methyl substituted 4,5,6,7-tetrahydro-imidazo[4,5-c]pyridines ultimately leading to the identification of 1 (JNJ 54166060). 1 is a potent P2X7 antagonist with an ED50 = 2.3 mg/kg in rats, high oral bioavailability and low-moderate clearance in preclinical species, acceptable safety margins in rats, and a predicted human dose of 120 mg of QD. Additionally, 1 possesses a unique CYP profile and was found to be a regioselective inhibitor of midazolam CYP3A metabolism.


Subject(s)
Purinergic P2X Receptor Antagonists/chemistry , Purinergic P2X Receptor Antagonists/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Receptors, Purinergic P2X7/metabolism , Administration, Oral , Animals , Dogs , Halogenation , Haplorhini , Humans , Imidazoles/administration & dosage , Imidazoles/chemistry , Imidazoles/pharmacokinetics , Imidazoles/pharmacology , Mice , Models, Molecular , Purinergic P2X Receptor Antagonists/administration & dosage , Purinergic P2X Receptor Antagonists/pharmacokinetics , Pyridines/administration & dosage , Pyridines/pharmacokinetics , Rats
9.
Eur J Pharmacol ; 663(1-3): 40-50, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21575625

ABSTRACT

As an integrator of multiple nociceptive and/or inflammatory stimuli, TRPV1 is an attractive therapeutic target for the treatment of various painful disorders. Several TRPV1 antagonists have been advanced into clinical trials and the initial observations suggest that TRPV1 antagonism may be associated with mild hyperthermia and thermal insensitivity in man. However, no clinical efficacy studies have been described to date, making an assessment of risk:benefit impossible. Furthermore, it is not clear whether these early observations are representative of all TRPV1 antagonists and whether additional clinical studies with novel TRPV1 antagonists are required in order to understand optimal compound characteristics. In the present study we describe 2-(2,6-dichloro-benzyl)-thiazolo[5,4-d]pyrimidin-7-yl]-(4-trifluoromethyl-phenyl)-amine (JNJ-39729309) as a novel, TRPV1 antagonist. JNJ-39729209 displaced tritiated resiniferotoxin binding to TRPV1 and prevented TRPV1 activation by capsaicin, protons and heat. In-vivo, JNJ-39729209 blocked capsaicin-induced hypotension, induced a mild hyperthermia and inhibited capsaicin-induced hypothermia in a dose dependent manner. JNJ-39729209 showed significant efficacy against carrageenan- and CFA-evoked thermal hyperalgesia and exhibited significant anti-tussive activity in a guinea-pig model of capsaicin-induced cough. In pharmacokinetic studies, JNJ-39729209 was found to have low clearance, a moderate volume of distribution, good oral bioavailability and was brain penetrant. On the basis of these findings, JNJ-39729209 represents a structurally novel TRPV1 antagonist with potential for clinical development. The advancement of JNJ-39729209 into human clinical trials could be useful in further understanding the analgesic potential of TRPV1 antagonists.


Subject(s)
Pyrimidines/pharmacology , TRPV Cation Channels/antagonists & inhibitors , Thiazoles/pharmacology , Animals , Body Temperature/drug effects , Cell Line , Clinical Trials as Topic , Cough/drug therapy , Dogs , Female , Guinea Pigs , Humans , Hyperalgesia/drug therapy , Hypotension/drug therapy , Male , Mice , Pyrimidines/pharmacokinetics , Pyrimidines/therapeutic use , Rats , Thiazoles/pharmacokinetics , Thiazoles/therapeutic use
10.
Mol Pharmacol ; 79(6): 910-20, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21372172

ABSTRACT

The hypoxia-inducible factor (HIF) prolyl hydroxylase (PHD) enzymes represent novel targets for the treatment of anemia, ulcerative colitis, and ischemic and metabolic disease inter alia. We have identified a novel small-molecule inhibitor of PHD, 1-(5-chloro-6-(trifluoromethoxy)-1H-benzoimidazol-2-yl)-1H-pyrazole-4-carboxylic acid (JNJ-42041935), through structure-based drug design methods. The pharmacology of JNJ-42041935 was investigated in enzyme, cellular, and whole-animal systems and was compared with other compounds described in the literature as PHD inhibitors. JNJ-42041935, was a potent (pK(I) = 7.3-7.9), 2-oxoglutarate competitive, reversible, and selective inhibitor of PHD enzymes. In addition, JNJ-42041935 was used to compare the effect of selective inhibition of PHD to intermittent, high doses (50 µg/kg i.p.) of an exogenous erythropoietin receptor agonist in an inflammation-induced anemia model in rats. JNJ-42041935 (100 µmol/kg, once a day for 14 days) was effective in reversing inflammation-induced anemia, whereas erythropoietin had no effect. The results demonstrate that JNJ-42041935 is a new pharmacological tool, which can be used to investigate PHD inhibition and demonstrate that PHD inhibitors offer great promise for the treatment of inflammation-induced anemia.


Subject(s)
Benzimidazoles/pharmacology , Enzyme Inhibitors/pharmacology , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Procollagen-Proline Dioxygenase/antagonists & inhibitors , Pyrazoles/pharmacology , Amino Acid Sequence , Animals , Cell Line, Tumor , Female , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mice , Molecular Sequence Data , Procollagen-Proline Dioxygenase/chemistry , Procollagen-Proline Dioxygenase/metabolism , Protein Binding , Rats , Rats, Inbred Lew
11.
Bioorg Med Chem Lett ; 20(14): 4210-4, 2010 Jul 15.
Article in English | MEDLINE | ID: mdl-20561786

ABSTRACT

The pre-clinical characterization of novel aryloxypyridine amides that are histamine H(3) receptor antagonists is described. These compounds are high affinity histamine H(3) ligands that penetrate the CNS and occupy the histamine H(3) receptor in rat brain. Several compounds were extensively profiled pre-clinically leading to the identification of two compounds suitable for nomination as development candidates.


Subject(s)
Azepines/pharmacology , Histamine H3 Antagonists/pharmacology , Pyridines/pharmacology , Amides/chemistry , Animals , Azepines/chemistry , Drug Evaluation, Preclinical , Pyridines/chemistry , Rats
12.
Drug Dev Ind Pharm ; 34(9): 930-5, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18800253

ABSTRACT

The purpose of this study is to account for thermodynamic variations due to changes in the physical environment of propellant-based systems, particularly metered dose inhalers (MDIs). Twenty organic compounds were measured via differential scanning calorimetry under ambient pressure, 60 psi, and 90 psi. The increase in pressure did not affect the melting point of any of the compounds. A modest increase (approximately 8%) in enthalpy of fusion was noted. This correlates to a modest increase in entropy of fusion, and thus ideal crystalline solubility, though the magnitude of this change depends primarily on the melting point of the given compound. Because the relationship between melting point and solubility is logarithmic, compounds with higher melting points are affected more by this increased energy of melting. Based on the findings, modest changes can be made to predictive models to estimate solubility in propellant systems to account for changes in the physical environment of MDIs.


Subject(s)
Metered Dose Inhalers , Chlorofluorocarbons, Methane/administration & dosage , Chlorofluorocarbons, Methane/chemistry , Hydrocarbons, Fluorinated/administration & dosage , Hydrocarbons, Fluorinated/chemistry , Pressure , Solubility , Thermodynamics
13.
Int J Pharm ; 360(1-2): 122-47, 2008 Aug 06.
Article in English | MEDLINE | ID: mdl-18514447

ABSTRACT

The GSE (General Solubility Equation) and AQUAFAC (Aqueous Functional Group Activity Coefficients) are two empirical models for aqueous solubility prediction. This study compares the aqueous solubility estimation of a set of 1642 pharmaceutically and environmentally related compounds, using the two methods. The average absolute errors in the solubility prediction are 0.543 log units for AQUAFAC and 0.576 log units for the GSE. About 88.0% of the AQUAFAC solubilities and 83.0% of the GSE molar aqueous solubilities are predicted within one log unit of the observed values. The marginally greater accuracy of AQUAFAC is due to the fact that it utilizes fitted-parameters for many structural fragments and is based on experimental solubility data. The GSE on the other hand is a simpler, non-regression based equation which uses two parameters for solubility prediction.


Subject(s)
Chemistry, Pharmaceutical/methods , Solubility , Algorithms , Chemistry, Pharmaceutical/standards , Data Interpretation, Statistical , Environmental Pollutants/chemistry , Organic Chemicals/chemistry , Pharmaceutical Preparations/chemistry , Reference Standards , Reproducibility of Results
14.
J Pharm Sci ; 97(12): 5222-8, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18383335

ABSTRACT

The objective of these studies was to examine the in vivo performance of oral formulations of chlorpropham (CIPC). In order to develop a new oral formulation several different solubilization techniques were evaluated, namely: cosolvents, surfactants, and complexing agents. The solubilization data indicated that a conventional solution formulation was not plausible. Two self-emulsifying drug delivery systems (SEDDS) were developed and evaluated for stability. Both SEDDS formulations were found to be chemically stable. In vivo analysis of a SEDDS formulation, a suspension formulation and an intravenous bolus dose was conducted in F344 rats. Pharmacokinetic analysis of the formulation data indicated that the SEDDS formulation provided only marginally better oral bioavailability compared to a suspension formulation. While SEDDS formulations often result in greater bioavailability this was not observed for CIPC. In vivo analysis indicate that CIPC results in a situation where the dissolution rate of CIPC from the suspension is not rate limiting, rather the absorption rate in the GI tract is rate-limiting. This paradigm is the result of CIPCs low melting point and the relatively small particle size of the suspension which facilitate the dissolution in the GI tract.


Subject(s)
Chlorpropham/therapeutic use , Administration, Oral , Animals , Biological Availability , Chlorpropham/administration & dosage , Chlorpropham/pharmacokinetics , Chromatography, High Pressure Liquid , Hydrogen-Ion Concentration , Particle Size , Rats , Rats, Inbred F344 , Solubility
15.
AAPS PharmSciTech ; 7(1): E26, 2006 Mar 24.
Article in English | MEDLINE | ID: mdl-16584157

ABSTRACT

The purpose of this work was to derive an equation for the rapid estimation of octanol solubilities of organic compounds. Solubilities ranging over 4 orders of magnitude were predicted with an average absolute error of 0.39 logarithmic units using melting point alone. The greatest error in prediction occurred for strongly bonded compounds.


Subject(s)
1-Octanol/chemistry , Solubility , Regression Analysis
16.
AAPS PharmSciTech ; 7(1): E184-E191, 2006 Mar.
Article in English | MEDLINE | ID: mdl-28290041

ABSTRACT

The purpose of this work was to derive an equation for the rapid estimation of octanol solubilities of organic compounds. Solubilities ranging over 4 orders of, magnitude were predicted with an average absolute error of 0.39 logarithmic units using melting point alone. The greatest error in prediction occurred for strongly bonded compounds.

SELECTION OF CITATIONS
SEARCH DETAIL