Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(28): 19823-19879, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38903666

ABSTRACT

Stilbenes are a small family of polyphenolic secondary metabolites produced in a variety of closely related plant species. These compounds function as phytoalexins, aiding plant defense against phytopathogens and plants' adaptation to abiotic environmental factors. Structurally, some important phenolic compounds have a 14-carbon skeleton and usually have two isomeric forms, Z and E. Stilbenes contain two benzene rings linked by a molecule of ethanol or ethylene. Some derivatives of natural (poly)phenolic stilbenes such as resveratrol, pterostilbene, and combretastatin A-4 have shown various biological activities, such as anti-microbial, anti-cancer, and anti-inflammatory properties as well as protection against heart disease, Alzheimer's disease, and diabetes. Among stilbenes, resveratrol is certainly the most popular and extensively studied for its health properties. In recent years, an increasing number of stilbene compounds have been investigated for their bioactivity. This review focuses on the assessment of synthetic stilbene derivatives in terms of their biological activities and structure-activity relationship. The goal of this study is to consider the structural changes and different substitutions on phenyl rings that can improve the desired medicinal effects of stilbene-based compounds beyond the usual standards and subsequently discover biological activities by identifying effective alternatives of the evaluated compounds.

2.
Arch Pharm (Weinheim) ; 356(9): e2300252, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37401193

ABSTRACT

Urease is a metalloenzyme including two Ni2+ ions, found in some plants, bacteria, fungi, microorganisms, invertebrate animals, and animal tissues. Urease acts as a significant virulence factor, mainly in catheter blockage and infective urolithiasis as well as in the pathogenesis of gastric infection. Therefore, studies on urease lead to novel synthetic inhibitors. In this review, the synthesis and antiurease activities of a collection of privileged synthetic heterocycles such as (thio)barbiturate, (thio)urea, dihydropyrimidine, and triazol derivatives were described and discussed according to structure-activity relationship findings in search of the best moieties and substituents that are answerable for encouraging the desired activity even more potent than the standard. It was found that linking substituted phenyl and benzyl rings to the heterocycles led to potent urease inhibitors.

3.
J Biomol Struct Dyn ; : 1-17, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37325813

ABSTRACT

The novel hybrids with 1,2,3-triazole and polyhydroquinoline scaffolds were successfully synthesized by multicomponent reaction of propargyloxybenzaldehyde, 1,3-cyclohexadione, ethylacetoacetate and ammonium acetate followed through click reaction in the presence of deep eutectic solvent ChCl/ZnCl2 as an efficient catalyst. Their anti-leishmanial activity was evaluated against amastigote and promastigote forms of L. tropica, L. major, and two different species of L. infantum. Furthermore, to determine the cytotoxicity of the hybrids, they were evaluated against the murine macrophage cell line J774.A1. Based on the results, three hybrids showed the highest antileishmanial activity. However, they revealed low cytotoxicity. Hybrid 6j was the most potent compound against both the forms of all leishmanial types, with IC50 = 13.5 and 11.9 µg/mL for L. major, 37.5 and 25 µg/mL for L. tropica, 17.5 and 20 µg/mL for L. infantum (MCAN/IR//96/LON49) and 35.5 and 30 µg/mL for L. infantum (MCAN/ES/98/LIM-877), respectively. Finally, molecular docking and molecular dynamics simulations were also performed to identify possible mechanism antileishmanial activity.Communicated by Ramaswamy H. Sarma.

4.
Chem Biodivers ; 20(5): e202300054, 2023 May.
Article in English | MEDLINE | ID: mdl-37026445

ABSTRACT

New series of triazole-tetrahydropyrimidinone(thione) hybrids (9a-g) were synthesized. FT-IR, 1 H-NMR, 13 C-NMR, elemental analysis and mass spectroscopic studies characterized the structures of the synthesized compounds. Then, the synthesized compounds were screened to determine the urease inhibitory activity. Methyl 4-(4-((1-(2-chlorobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (9c) exhibited the highest urease inhibitory activity (IC50 =25.02 µM) among the compounds which was almost similar to thiourea as standard (IC50 =22.32 µM). The docking study of the screened compounds demonstrated that these compounds fit well in the urease active site. Based on the docking study, compound 9c with the highest urease inhibitory activity showed chelates with both Ni2+ ions of the urease active site. Moreover, the molecular dynamic study of the most potent compounds showed that they created important interactions with the active site flap residues, His322, Cys321, and Met317.


Subject(s)
Molecular Dynamics Simulation , Urease , Structure-Activity Relationship , Thiones/pharmacology , Triazoles/pharmacology , Spectroscopy, Fourier Transform Infrared , Molecular Docking Simulation , Enzyme Inhibitors/chemistry , Molecular Structure
5.
Mol Divers ; 27(6): 2555-2575, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36417095

ABSTRACT

Leishmaniasis includes a range of parasitic diseases caused by numerous types of the protozoan kinetoplastid parasite. Fungal and bacterial pathogens have led to infectious illnesses causing some main public health problem in current years. A series of dihydropyridine and tetrahydropyrimidine derivatives having fluoro, bromo, and nitro substituents at para-phenyl ring on C4 of dihydropyridine and tetrahydropyrimidine rings were synthesized. Then, anti-leishmanial and antimicrobial potencies of compounds were assessed. All compounds were synthesized via Hantzsch and Biginelli reactions. All derivatives were evaluated for their anti-leishmanial and antimicrobial activities. Moreover, docking and molecular dynamics simulation calculations of the compounds in PRT1 binding site were performed to report the results of anti-leishmanial and antimicrobial activities. Compounds 4a and 4b showed the highest anti-amastigote and anti-promastigote activities. Compound 4a revealed the highest antimicrobial activity against E. coli, P. aeruginosa, and C. albicans strains. In addition, compound 4c showed the highest activity against S. aureus. The fluoro, bromo, and nitro substituents in para-position of phenyl group at C4 of dihydropyridine and tetrahydropyrimidine moieties as well as the bulk and length of the chain linking to the ester moieties are essential for anti-leishmanial and anti-microbial activities of these derivatives. Low cytotoxicity was shown by most of derivatives against macrophages. The molecular docking studies were in agreement with in vitro assay. Moreover, hydrogen binds, RMSF, RMSD, and Rg, strongly showed the steady binding of 4a and 4b compounds in PRT1 active site.


Subject(s)
Anti-Infective Agents , Leishmania , Nifedipine , Molecular Docking Simulation , Escherichia coli , Staphylococcus aureus , Anti-Infective Agents/chemistry , Candida albicans
6.
Front Chem ; 10: 936240, 2022.
Article in English | MEDLINE | ID: mdl-36226120

ABSTRACT

Background: Alzheimer's disease (AD) is an advanced and irreversible degenerative disease of the brain, recognized as the key reason for dementia among elderly people. The disease is related to the reduced level of acetylcholine (ACh) in the brain that interferes with memory, learning, emotional, and behavior responses. Deficits in cholinergic neurotransmission are responsible for the creation and progression of numerous neurochemical and neurological illnesses such as AD. Aim: Herein, focusing on the fact that benzylpyridinium salts mimic the structure of donepezil hydrochlorideas a FDA-approved drug in the treatment of AD, their synthetic approaches and inhibitory activity against cholinesterases (ChEs) were discussed. Also, molecular docking results and structure-activity relationship (SAR) as the most significant concept in drug design and development were considered to introduce potential lead compounds. Key scientific concepts: AChE plays a chief role in the end of nerve impulse transmission at the cholinergic synapses. In this respect, the inhibition of AChE has been recognized as a key factor in the treatment of AD, Parkinson's disease, senile dementia, myasthenia gravis, and ataxia. A few drugs such as donepezil hydrochloride are prescribed for the improvement of cognitive dysfunction and memory loss caused by AD. Donepezil hydrochloride is a piperidine-containing compound, identified as a well-known member of the second generation of AChE inhibitors. It was established to treat AD when it was assumed that the disease is associated with a central cholinergic loss in the early 1980s. In this review, synthesis and anti-ChE activity of a library of benzylpyridinium salts were reported and discussed based on SAR studies looking for the most potent substituents and moieties, which are responsible for inducing the desired activity even more potent than donepezil. It was found that linking heterocyclic moieties to the benzylpyridinium salts leads to the potent ChE inhibitors. In this respect, this review focused on the recent reports on benzylpyridinium salts and addressed the structural features and SARs to get an in-depth understanding of the potential of this biologically improved scaffold in the drug discovery of AD.

7.
Arch Pharm (Weinheim) ; 355(10): e2200158, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35833485

ABSTRACT

The urease enzyme, a metalloenzyme having Ni2+ ions, is recognized in some bacteria, fungi, and plants. Particularly, it is vital to the progress of infections induced by pathogenic microbes, such as Proteus mirabilis and Helicobacter pylori. Herein, we reported the synthesis of a series of tetrahydropyrimidine derivatives and evaluated their antiurease activity. Finally, quantitative and qualitative analyses of the derivatives were performed via in silico studies. Urease inhibitory activity was determined as the reaction of H. pylori urease with different concentrations of compounds, and thiourea was used as a standard compound. Docking and dynamics methodologies were applied to study the interactions of the best compounds with the amino acids in the active site. All compounds showed good to excellent antiurease activity. The potent compounds were not cytotoxic against the HUVEC normal cell line. Based on the docking study, compound 4e with the highest urease inhibitory activity (IC50 = 6.81 ± 1.42 µM) showed chelates with both Ni2+ ions of the urease active site. Further, compound 4f displayed a very good inhibitory activity (IC50 = 8.45 ± 1.64 µM) in comparison to thiourea (IC50 = 22.03 ± 1.24 µM). The molecular docking and dynamics simulation results were correlated with the in vitro assay results. Moreover, the derivatives 4a-n followed Lipinski's rule-of-five and had drug-likeness properties.


Subject(s)
Helicobacter pylori , Metalloproteins , Amino Acids , Enzyme Inhibitors/chemistry , Metalloproteins/metabolism , Molecular Docking Simulation , Structure-Activity Relationship , Thiourea/pharmacology , Urease
8.
Res Pharm Sci ; 17(2): 189-208, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35280831

ABSTRACT

Background and purpose: Human papillomavirus (HPV) is known as the main reason for cervical cancer. According to carcinogenic risk, HPV can be located into two classes, counting the low-risk virus, which is the main cause of genital warts and low-grade cervical epithelial lesions. HPV-16 is one of the high-risk HPV subtypes in the spectrum of cervical diseases. Experimental approach: The PubChem database was screened in order to identify potential anti-HPV hits followed by ADMET predictions. Then, molecular docking was performed to improve the accuracy of screening and also to find the details of the interactions of the hit compounds with the active site. Finally, molecular dynamic (MD) simulations and free binding energy on top-ranked structures CID_73212812, CID_91059286, CID_69838075, cidofovir, and jaceosidin were carried out with protein to compute the interaction energies and stability of the top-ranked compounds at the active site. Findings/Results: Based on molecular docking studies, three compounds including CID_73212812, CID_91059286, and CID_69838075 exhibited the best results among compounds against the E6 protein of HPV-16. Furthermore, RMSD, RMSF, hydrogen binds, Rg, and energy analysis during MD simulation certainly indicated the stable binding of selected compounds with E6 protein of HPV-16 active site. Conclusion and implications: Docking and MD results revealed that hydrophobic contacts and optimum hydrogen bonds were determinant factors in the interactions of hits and the E6 protein of HPV-16. In addition, the binding energy portions exposed that Van der Waals and non-polar interactions were fundamental factors in the molecule binding.

9.
Comput Biol Chem ; 97: 107642, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35183819

ABSTRACT

It is essential to study α-glucosidase enzyme (EC 3.2.1.20) inhibitors because of their physiological role as well as their clinical relevance. In previous research, a novel series of thiosemicarbazone-indole hybrid compounds were synthesized and reported. In the current research, α-glucosidase inhibitory activity of the derivatives was evaluated and then in silico studies were carried out on screened compounds. All derivatives exhibited a magnificent α-glucosidase inhibitory activity (IC50 = 27.0 ± 1.0-97.4 ± 1.5 µM) toward the acarbose as reference drug (IC50 = 750.0 ± 1.5 µM). Compound 1i having phenyl ring at the thiosemicarbazone moiety and the trimethoxymethyl substituent at phenyl moiety of C2 position of indole ring was the most potent compound (IC50 = 27.0 ± 1.0 µM) among other compounds. A kinetic study of 1i revealed that is a competitive inhibitor against α-glucosidase. Moreover, the molecular docking studies established that screened derivatives interacted with the essential amino acids in the active site. Finally, based on the molecular dynamics simulations and free binding energy calculations, complexes 1d, 1i and 1k with α-glucosidase showed a good stability in the active site. Van der Waals and electrostatic interactions also exhibited the most contributions to the stability of these complexes. Moreover, all the screened compounds showed agreeable ADME properties for oral bio-availability, and good drug-likeness.


Subject(s)
Glycoside Hydrolase Inhibitors , Thiosemicarbazones , Glycoside Hydrolase Inhibitors/chemistry , Indoles/pharmacology , Molecular Docking Simulation , Molecular Structure , Structure-Activity Relationship , Thiosemicarbazones/pharmacology , alpha-Glucosidases/metabolism
10.
Acta Parasitol ; 67(1): 255-266, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34279776

ABSTRACT

PURPOSE: A number of tetrahydropyrimidines and their bioisosteric dihydropyridines bearing chloro substituent at various positions of phenyl ring in C4 of main scaffolds were designed, synthesized and evaluated for antileishmanial activity. METHODS: The antileishmanial activity of the synthesized compounds was evaluated against promastigote and amastigote forms. Moreover, molecular docking studies of the compounds in pteridine reductase 1 (PTR1) pocket were carried out to describe the results of biological experiments. RESULTS: The compounds exhibited moderate to good antileishmanial activity against promastigote and amastigote forms. Among the screened compounds, 1d and 2c were found as the most potent compounds against promastigote form with EC50 values of 15.5 and 10.5 µM, respectively. Compounds 2a and 2c were the most potent compounds against amastigote form with EC50 values of 5.4 and 2.2 µM, respectively. CONCLUSION: According to structure-activity relationship (SAR) studies, the chloro substituent in different positions of phenyl ring at C4 of 1,2,3,4-tetrahydropyrimidine (THPM) and 1,4-dihydropyridine (DHP) rings and also the length of the chain belonging to the ester groups could be important for antileishmanial activity of these compounds. Most of these compounds exhibited low cytotoxicity against macrophages. Compounds 1 h, 2a, 2b and 2c revealed higher activity than glucantime while all compounds showed lower activity toward amphotericine B. Docking studies showed that the synthesized compounds were fit well in the PTR1 pocket. Compounds 1 h and 2c indicated the highest score docking among screened compounds in PTR1 enzyme.


Subject(s)
Antiprotozoal Agents , Dihydropyridines , Leishmania major , Antiprotozoal Agents/pharmacology , Dihydropyridines/pharmacology , Molecular Docking Simulation , Structure-Activity Relationship
11.
Bioorg Chem ; 102: 104091, 2020 09.
Article in English | MEDLINE | ID: mdl-32717692

ABSTRACT

This study reports the synthesis and biological investigation of three series of novel monocyclic ß-lactam derivatives bearing a morpholine ring substituent on the nitrogen. The resulting ß-lactam adducts were synthesized via Staudinger's [2 + 2]-ketene-imine cycloaddition reaction. New synthesized products were fully characterized by spectral data and elemental analyses, and then evaluated for anti-inflammatory activity toward human inducible nitric oxide synthase (iNOS) and cytotoxicity toward HepG2 cell line. The compounds 3e, 3h, 3k, 5c, 5f, 6c, 6d and 6f showed higher activity with anti-inflammatory ratio values of 38, 62, 51, 72, 51, 35, 55 and 99, respectively, in comparison to the reference compound dexamethasone having an anti-inflammatory ratio value of 32. Hence, these compounds can be considered as potent iNOS inhibitors. They also exhibited IC50 values of 0.48 ± 0.04 mM, 0.51 ± 0.01 mM, 0.22 ± 0.02 mM, 0.12 ± 0.00 mM, 0.25 ± 0.05 mM, 0.82 ± 0.07 mM, 0.44 ± 0.04 mM and 0.60 ± 0.04 mM, respectively, in comparison with doxorubicin (IC50 < 0.01 mM) against HepG2 cells, biocompatibility and nontoxic behavior. In silico prediction of drug-likeness characteristic indicated that the compounds are compliant with the Lipinski and Veber rules. Molecular docking experiments showed a good correlation between the experimental activity and the calculated binding affinity to human inducible nitric oxide synthase, the enzymatic target for the anti-inflammatory response.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents/pharmacology , Molecular Docking Simulation , Morpholines/pharmacology , Nitric Oxide Synthase Type II/antagonists & inhibitors , beta-Lactams/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Hep G2 Cells , Humans , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Mice , Molecular Structure , Morpholines/chemical synthesis , Morpholines/chemistry , Nitric Oxide/antagonists & inhibitors , Nitric Oxide/biosynthesis , Nitric Oxide Synthase Type II/metabolism , RAW 264.7 Cells , Structure-Activity Relationship , beta-Lactams/chemistry
12.
Arch Pharm (Weinheim) ; 353(9): e2000023, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32596826

ABSTRACT

A new series of 1,2,3-triazole-(thio)barbituric acid hybrids 8a-n was designed and synthesized on the basis of potent pharmacophores with urease inhibitory activity. Therefore, these compounds were evaluated against Helicobacter pylori urease. The obtained result demonstrated that all the synthesized compounds, 8a-n, were more potent than the standard urease inhibitor, hydroxyurea. Moreover, among them, compounds 8a, 8c-e, 8g,h, and 8k,l exhibited higher urease inhibitory activities than the other standard inhibitor used: thiourea. Docking studies were performed with the synthesized compounds. Furthermore, molecular dynamic simulation of the most potent compounds, 8e and 8l, showed that these compounds interacted with the conserved residues Cys592 and His593, which belong to the active site flap and are essential for enzymatic activity. These interactions have two consequences: (a) blocking the movement of a flap at the entrance of the active site channel and (b) stabilizing the closed active site flap conformation, which significantly reduces the catalytic activity of urease. Calculation of the physicochemical and topological properties of the synthesized compounds 8a-n predicted that all these compounds can be orally active. The ADME prediction of compounds 8a-n was also performed.


Subject(s)
Enzyme Inhibitors/pharmacology , Thiobarbiturates/pharmacology , Triazoles/pharmacology , Urease/antagonists & inhibitors , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Helicobacter pylori/drug effects , Helicobacter pylori/enzymology , Molecular Docking Simulation , Molecular Dynamics Simulation , Structure-Activity Relationship , Thiobarbiturates/chemical synthesis , Thiobarbiturates/chemistry , Thiourea/pharmacology , Triazoles/chemical synthesis , Triazoles/chemistry
13.
Bioorg Med Chem ; 28(8): 115408, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32165076

ABSTRACT

This article reports for the first time the synthesis of some novel ß-lactam morpholino-1,3,5-triazine hybrids by a [2+2]-cycloaddition reaction of imines 7a-c, 9a-c and 11 with ketenes derived from substituted acetic acids. The reaction was totally diastereoselective, leading exclusively to the formation of cis-ß-lactams 8a-l, 10a-f and 12a-c. The synthesized compounds were tested for activity towards SW1116, MCF-7 and HepG2 cancer cell lines and non-cancerous HEK-293 cell line by MTT assay. None of the compounds exert an observable effect on HepG2, MCF-7 and HEK-293 cells, but compounds 7b, 8f, 8g, 8l, 10c, and 10e exhibited excellent growth inhibitory activity (IC50 < 5 µM) against SW 1116 cells, comparable to that of doxorubicin (IC50 = 6.9 µM). An evaluation of the antioxidant potential of each of the compounds, performed by diphenylpicrylhydrazyl (DPPH) assay, indicated that 7b, 9a, 9b and 9c have strong free radical scavenging activity. UV absorption titration studies reveal that 7b, 8l, 8g and 8f interact strongly with calf-thymus DNA (CT-DNA) in the order of 8l > 7b > 8f > 8g. Collectively, the in vitro capabilities of some of these morpholino-triazine imines and ß-lactams suggest possible applications to development of new antioxidants and DNA binding therapeutics.


Subject(s)
Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Drug Design , Triazines/pharmacology , beta-Lactams/pharmacology , Antineoplastic Agents/chemical synthesis , Antioxidants/chemical synthesis , Cell Line , Inhibitory Concentration 50 , Models, Molecular , Molecular Structure , Structure-Activity Relationship , Triazines/chemistry , beta-Lactams/chemical synthesis
14.
Res Pharm Sci ; 15(6): 563-570, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33828599

ABSTRACT

BACKGROUND AND PURPOSE: Considering the undesirable consequences of prevalent cancer diseases, design and development of potent and selective anticancer chemotherapeutics is a major concern. Several studies have unraveled the potential of dihydropyrimidinone (DHPM) scaffold toward generating anticancer agents. EXPERIMENTAL APPROACH: In the present work, a series of new dihydropyrimidinethiones (DHPMTs) along with a few acyclic enamino amides were synthesized and evaluated for their cytotoxic activity against human gastric (AGS), liver (Hep-G2), and breast (MCF-7) cancer cell lines. FINDINGS/RESULTS: Among the assessed compounds, one of the DHPMT derivatives (compounds, one of the DHPMT derivatives (compound 5: 4-(3- fluorophenyl)-6-methyl-N-phenyl-2-thioxo-1,2,3,4-ttrahydropyrimidine-5-carboxamide) exhibited superior cytotoxicity in all of the target cell lines (AGS, IC50 9.9 µM; MCF-7, IC50 15.2 µM; and Hep-G2, IC50 40.5 µM). Cytotoxicity assessments showed that non-cyclic enamino amides exhibited weaker activities when compared to cyclic analogues (DHPMs). CONCLUSION AND IMPLICATIONS: DHPMTs were better cytotoxic agents than non-cyclic enamino amides. Structure activity relationship studies guided us toward the design of DHPMT derivatives with OH and NH groups particularly on meta position of 4-phenyl ring and hydrophobic bulky substituents on carboxamide side chain within the structure. Possible interaction with the hydrophobic site(s) of the cellular target was supposed. The results of this study emphasized the potential role of DHPMTs and their optimized derivatives as privileged medicinal scaffolds to inhibit the growth of gastric, breast, and liver cancer cells.

15.
Bioorg Chem ; 95: 103529, 2020 01.
Article in English | MEDLINE | ID: mdl-31884139

ABSTRACT

A new series of N,N-dimethylbarbituric-pyridinium derivatives 7a-n was synthesized and evaluated as Helicobacter pylori urease inhibitors. All the synthesized compounds (IC50 = 10.37 ± 1.0-77.52 ± 2.7 µM) were more potent than standard inhibitor hydroxyurea against urease (IC50 = 100.00 ± 0.2 µM). Furthermore, comparison of IC50 values of the synthesized compounds with the second standard inhibitor thiourea (IC50 = 22.0 ± 0.03 µM) revealed that compounds 7a-b and 7f-h were more potent than thiourea. Molecular modeling study of the most potent compounds 7a, 7b, 7f, and 7g was also conducted. Additionally, the drug-likeness properties of the synthesized compounds, based on Lipinski rule and other filters, were evaluated.


Subject(s)
Barbiturates/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Pyridines/chemistry , Urease/antagonists & inhibitors , Barbiturates/pharmacology , Biological Availability , Computer Simulation , Enzyme Inhibitors/pharmacokinetics , Helicobacter pylori/enzymology , In Vitro Techniques , Inhibitory Concentration 50 , Molecular Docking Simulation , Molecular Structure , Pyridines/pharmacology , Spectrum Analysis/methods
16.
Mol Divers ; 24(2): 525-569, 2020 May.
Article in English | MEDLINE | ID: mdl-31028558

ABSTRACT

Leishmania, one of the most important neglected tropical diseases, is endemic in several regions of the world and hence regarded as a serious threat to public health. Major difficulties with current chemotherapeutic agents raise issues such as toxicity, resistance, cost and other side effects. These issues necessitate development of potentially new chemical entities against diverse leishmanial species. Numerous natural and synthetic new antileishmanial molecules have been described for disease management. Careful inspection of scientific reports revealed that considerable amount of promising antileishmanial agents belonged to the nitrogen-containing heterocycles such as quinoline, triazole, pyrazole, imidazole, indole, pyrimidine, ß-carboline, quinoxaline, quinazoline and benzimidazole. In this regard, enormous chemical data provide the opportunity for systematic elucidation of structural requirements against different leishmanial species. Within this representation, insights into the current status of privileged N-heterocycles as antileishmanial agents with particular emphasis on structure activity relationships are reviewed.


Subject(s)
Antiprotozoal Agents , Heterocyclic Compounds , Leishmaniasis/drug therapy , Animals , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Antiprotozoal Agents/therapeutic use , Heterocyclic Compounds/chemistry , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/therapeutic use , Humans , Leishmania/drug effects
17.
Res Pharm Sci ; 14(2): 155-166, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31620192

ABSTRACT

A series of new 1,2,3,4-tetrahydropyrimidine (THPM) derivatives were designed and synthesized within a one-pot three component Biginelli reaction. The structures of compounds were characterized by FT-IR, 1HNMR, mass spectroscopy, and elemental analysis. All synthesized derivatives were screened for their cytotoxic, antimicrobial, and anti-HIV activities. Due to significant cytotoxic and antimicrobial effects of 1,2,3,4-THPM scaffold, in this study, cytotoxic and antimicrobial activities of synthesized derivatives were evaluated on two cell lines and four bacterial strains. Compounds 4e and 4k showed highest cytotoxic activity against HeLa and MCF-7 cell lines. In addition, 4c and 4d were most active against MCF-7 and HeLa cell lines, respectively. Among the compounds, 4e revealed high antimicrobial activity against four strains. According to the results, 4e possessing m-bromophenyl group at C-4 position of THPM exhibited the highest cytotoxic and antimicrobial effects. Also, all the newly synthesized compounds were evaluated for their anti-HIV-1 assay. Compounds 4l and 4a indicated remarkable anti-HIV-1 activity. It is concluded from cytotoxic, antimicrobial, and anti-HIV-1 activities that the 1,2,3,4-tertahydropyrimidines may serve as hit compounds for development of new anticancer small-molecules.

18.
Chem Biodivers ; 16(11): e1900370, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31523926

ABSTRACT

A novel series of phthalimide-dithiocarbamate hybrids was synthesized and evaluated for in vitro inhibitory potentials against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The anti-cholinesterase results indicated that among the synthesized compounds, the compounds 7g and 7h showed the most potent anti-AChE and anti-BuChE activities, respectively. Molecular docking and dynamic studies of the compounds 7g and 7h, respectively, in the active site of AChE and BuChE revealed that these compounds as well interacted with studied cholinesterases. These compounds also possessed drug-like properties and were able to cross the BBB.


Subject(s)
Alzheimer Disease/drug therapy , Drug Design , Enzyme Inhibitors/pharmacology , Molecular Docking Simulation , Phthalimides/pharmacology , Thiocarbamates/pharmacology , Acetylcholinesterase/metabolism , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/metabolism , Animals , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/metabolism , Butyrylcholinesterase/metabolism , Electrophorus , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Horses , Humans , Molecular Dynamics Simulation , Molecular Structure , Phthalimides/chemistry , Thiocarbamates/chemistry
19.
Eur J Med Chem ; 179: 389-403, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31260892

ABSTRACT

Highly diastereoselective synthesis of chromeno ß-lactam hybrids was achieved by an efficient one-pot three-component reaction. With this procedure, the desired ß-lactam products were obtained in good yields and with exclusive cis stereoselection, by combining a variety of benzaldehydes, malononitrile, and either 5,5-dimethylcyclohexane-1,3-dione or 4-hydroxycoumarin in the presence of 1,4-diazabicyclo [2.2.2]octane under reflux conditions. These adducts were structurally characterized on the basis of IR, 1D and 2D NMR spectra, X-ray analysis, H-H COSY and H-C HSQC two-dimensional NMR experiments, and elemental analysis. Each of the synthesized compounds was screened for anti-inflammatory and anticancer activities. ß-Lactams 5b and 8b showed a 53.4 and 19.8 anti-inflammatory ratio, respectively, and 5b appeared more active than the well-known dexamethasone corticosteroid used for the treatment of rheumatoid and skin inflammation. ß-Lactams 5a, 5b, 5e, 5f, 5g, 8c, 8j and 8p also showed good antitumor activity against the SW1116 (colon cancer) cell line without notable cytotoxicity towards the HepG2 control cell line.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents/pharmacology , Benzopyrans/pharmacology , Inflammation/drug therapy , Neoplasms/drug therapy , beta-Lactams/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemical synthesis , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzopyrans/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Evaluation, Preclinical , Drug Screening Assays, Antitumor , Hep G2 Cells , Humans , Mice , Molecular Structure , RAW 264.7 Cells , Structure-Activity Relationship , Tumor Cells, Cultured , beta-Lactams/chemistry
20.
Chem Biodivers ; 16(1): e1800410, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30341985

ABSTRACT

The salophen copper(II) complex was successfully used for the efficient synthesis of new 1,2,3-triazoles based on the naphthalene-1,4-dione scaffold. The reaction of 2-chloro-3-(prop-2-yn-1-yloxy)naphthalene-1,4-dione or 2,3-bis(prop-2-yn-1-yloxy)naphthalene-1,4-dione with aromatic azides in the presence of a low copper catalyst (loading 1 mol-%) afforded 2-chloro-3-[(1-phenyl-1H-1,2,3-triazol-4-yl)methoxy]naphthalene-1,4-dione or 2,3-bis[(1-phenyl-1H-1,2,3-triazol-4-yl)methoxy]naphthalene-1,4-dione, respectively. The advantages of these reactions are short reaction times, high-to-excellent reaction yields, operational simplicity, and mild experimental conditions. The new 1,2,3-triazoles obtained were screened for their in vitro antibacterial activities and were subjected to molecular docking studies.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Click Chemistry , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Copper/chemistry , Naphthalenes/chemistry , Salicylates/chemistry , Triazoles/chemical synthesis , Anti-Bacterial Agents/chemical synthesis , Coordination Complexes/chemical synthesis , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Microbial Sensitivity Tests , Molecular Docking Simulation , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...