Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Electrophoresis ; 44(3-4): 450-461, 2023 02.
Article in English | MEDLINE | ID: mdl-36448415

ABSTRACT

To date, a comprehensive systematic optimization framework, capable of accurately predicting an efficient electrode geometry, is not available. Here, different geometries, including 3D step electrodes, have been designed in order to fabricate AC electroosmosis micropumps. It is essential to optimize both geometrical parameters of electrode, such as width and height of steps on each base electrode and their location in one pair, the size of each base electrode (symmetric or asymmetric), the gap of electrode pairs, and nongeometrical parameters such as fluid flow in a channel and electrical characteristics (e.g., frequency and voltage). The governing equations comprising of electric domain and fluid domain have been coupled using finite element method. The developed model was employed to investigate the effect of electrode geometric parameters on electroosmotic slip velocity and its subsequent effect on pressure and flow rate. Numerical simulation indicates that the optimal performance can be achieved using a design with varying step height and displacement, at a given voltage (2.5 V) and frequency (1 kHz). Finally, in order to validate the numerical simulation, the optimal microchip was fabricated using a combination of photolithography, electroplating, and a polydimethylsiloxane microchannel. Our results indicate that our micropump is capable of generating a pressure, velocity, and flow rate of 74.2 Pa, 1.76 mm/s, and 14.8 µl/min, respectively. This result reveals that our proposed geometry outperforms the state-of-the-art micropumps previously reported in the literature by improving the fluid velocity by 32%, with 80% less electrodes per unit length, and whereas the channel length is ∼80% shorter.


Subject(s)
Electricity , Electroosmosis , Electrodes , Computer Simulation
2.
Ultrasonics ; 129: 106892, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36462460

ABSTRACT

Exploiting scattering and reflection related data of ultrasonic Lamb wave interactions with damage is a common approach to health monitoring of thin-walled structures. Using thin PZT sensors, the method can be implemented in real-time. Simulation of Lamb wave propagation and its interaction with damage plays an important role in damage diagnosis and prognosis. It is, however, a time-consuming task due to the high-frequency waves that are commonly used to detect tiny damage. The current study employs the Scaled Boundary Finite Element Method (SBFEM) for effective modeling of Lamb wave health monitoring of homogenous thin plates. The electromechanical effects of piezoelectric sensors are included in the model to improve accuracy and make the results comparable to those of laboratory experiments. Simple meshing of complex topologies is possible by converting standard finite elements to scaled boundary elements. The 3D SBFEM wave motion equations are solved in the time domain to capture the sensor's PZT response to a high-frequency tone-burst actuation. The results are validated by pitch-catch and pulse-echo laboratory tests carried out on thin plates. SBFEM is used to study wave propagation in complex configurations, such as a stiffened plate, and the results are compared to their FEM counterparts. According to the findings, SBFEM significantly reduces the computational costs associated with simulation of Lamb wave health monitoring while also providing significant accuracy in comparison to the experimental results.

SELECTION OF CITATIONS
SEARCH DETAIL
...