Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Eur J Hum Genet ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658779

ABSTRACT

Constitutional heterozygous pathogenic variants in the exonuclease domain of POLE and POLD1, which affect the proofreading activity of the corresponding polymerases, cause a cancer predisposition syndrome characterized by increased risk of gastrointestinal polyposis, colorectal cancer, endometrial cancer and other tumor types. The generally accepted explanation for the connection between the disruption of the proofreading activity of polymerases epsilon and delta and cancer development is through an increase in the somatic mutation rate. Here we studied an extended family with multiple members heterozygous for the pathogenic POLD1 variant c.1421T>C p.(Leu474Pro), which segregates with the polyposis and cancer phenotypes. Through the analysis of mutational patterns of patient-derived fibroblasts colonies and de novo mutations obtained by parent-offspring comparisons, we concluded that heterozygous POLD1 L474P just subtly increases the somatic and germline mutation burden. In contrast, tumors developed in individuals with a heterozygous mutation in the exonuclease domain of POLD1, including L474P, have an extremely high mutation rate (>100 mut/Mb) associated with signature SBS10d. We solved this contradiction through the observation that tumorigenesis involves somatic inactivation of the wildtype POLD1 allele. These results imply that exonuclease deficiency of polymerase delta has a recessive effect on mutation rate.

3.
Science ; 373(6558): 1030-1035, 2021 08 27.
Article in English | MEDLINE | ID: mdl-34385354

ABSTRACT

Biological mechanisms underlying human germline mutations remain largely unknown. We statistically decompose variation in the rate and spectra of mutations along the genome using volume-regularized nonnegative matrix factorization. The analysis of a sequencing dataset (TOPMed) reveals nine processes that explain the variation in mutation properties between loci. We provide a biological interpretation for seven of these processes. We associate one process with bulky DNA lesions that are resolved asymmetrically with respect to transcription and replication. Two processes track direction of replication fork and replication timing, respectively. We identify a mutagenic effect of active demethylation primarily acting in regulatory regions and a mutagenic effect of long interspersed nuclear elements. We localize a mutagenic process specific to oocytes from population sequencing data. This process appears transcriptionally asymmetric.


Subject(s)
Genome, Human , Germ-Line Mutation , Algorithms , CpG Islands , DNA Damage , DNA Demethylation , DNA Mutational Analysis , DNA Replication , Genetic Variation , Germ Cells , Humans , Long Interspersed Nucleotide Elements , Mutagenesis , Oocytes/physiology , Transcription, Genetic
5.
Nat Rev Genet ; 22(10): 672-686, 2021 10.
Article in English | MEDLINE | ID: mdl-34163020

ABSTRACT

Despite years of active research into the role of DNA repair and replication in mutagenesis, surprisingly little is known about the origin of spontaneous human mutation in the germ line. With the advent of high-throughput sequencing, genome-scale data have revealed statistical properties of mutagenesis in humans. These properties include variation of the mutation rate and spectrum along the genome at different scales in relation to epigenomic features and dependency on parental age. Moreover, mutations originated in mothers are less frequent than mutations originated in fathers and have a distinct genomic distribution. Statistical analyses that interpret these patterns in the context of known biochemistry can provide mechanistic models of mutagenesis in humans.


Subject(s)
Genome, Human , Genomics/methods , Germ Cells/metabolism , Mutagenesis , Mutation Rate , Mutation , Humans
6.
Nat Genet ; 51(1): 36-41, 2019 01.
Article in English | MEDLINE | ID: mdl-30510240

ABSTRACT

Studies in experimental systems have identified a multitude of mutational mechanisms including DNA replication infidelity and DNA damage followed by inefficient repair or replicative bypass. However, the relative contributions of these mechanisms to human germline mutation remain unknown. Here, we show that error-prone damage bypass on the lagging strand plays a major role in human mutagenesis. Transcription-coupled DNA repair removes lesions on the transcribed strand; lesions on the non-transcribed strand are preferentially converted into mutations. In human polymorphism we detect a striking similarity between mutation types predominant on the non-transcribed strand and on the strand lagging during replication. Moreover, damage-induced mutations in cancers accumulate asymmetrically with respect to the direction of replication, suggesting that DNA lesions are resolved asymmetrically. We experimentally demonstrate that replication delay greatly attenuates the mutagenic effect of ultraviolet irradiation, confirming that replication converts DNA damage into mutations. We estimate that at least 10% of human mutations arise due to DNA damage.


Subject(s)
DNA Replication/genetics , DNA/genetics , Germ-Line Mutation/genetics , Neoplasms/genetics , Cells, Cultured , DNA Damage/genetics , DNA Repair/genetics , Humans , Mutagenesis/genetics , Polymorphism, Single Nucleotide/genetics , Transcription, Genetic/genetics
7.
Nat Genet ; 50(4): 487-492, 2018 04.
Article in English | MEDLINE | ID: mdl-29507425

ABSTRACT

Clustering of mutations has been observed in cancer genomes as well as for germline de novo mutations (DNMs). We identified 1,796 clustered DNMs (cDNMs) within whole-genome-sequencing data from 1,291 parent-offspring trios to investigate their patterns and infer a mutational mechanism. We found that the number of clusters on the maternal allele was positively correlated with maternal age and that these clusters consisted of more individual mutations with larger intermutational distances than those of paternal clusters. More than 50% of maternal clusters were located on chromosomes 8, 9 and 16, in previously identified regions with accelerated maternal mutation rates. Maternal clusters in these regions showed a distinct mutation signature characterized by C>G transversions. Finally, we found that maternal clusters were associated with processes involving double-strand-breaks (DSBs), such as meiotic gene conversions and de novo deletion events. This result suggested accumulation of DSB-induced mutations throughout oocyte aging as the mechanism underlying the formation of maternal mutation clusters.


Subject(s)
Cellular Senescence/genetics , DNA Breaks, Double-Stranded , Germ-Line Mutation , Oocytes/cytology , Oocytes/metabolism , Adult , Cohort Studies , DNA Copy Number Variations , Databases, Genetic , Female , Humans , Infant, Newborn , Male , Maternal Age , Middle Aged , Multigene Family , Paternal Age , Polymorphism, Single Nucleotide , Young Adult
8.
J Pathol ; 243(3): 331-341, 2017 11.
Article in English | MEDLINE | ID: mdl-28805995

ABSTRACT

Biallelic mismatch repair deficiency (bMMRD) in tumours is frequently associated with somatic mutations in the exonuclease domains of DNA polymerases POLE or POLD1, and results in a characteristic mutational profile. In this article, we describe the genetic basis of ultramutated high-grade brain tumours in the context of bMMRD. We performed exome sequencing of two second-cousin patients from a large consanguineous family of Indian origin with early onset of high-grade glioblastoma and astrocytoma. We identified a germline homozygous nonsense variant, p.R802*, in the PMS2 gene. Additionally, by genome sequencing of these tumours, we found extremely high somatic mutation rates (237/Mb and 123/Mb), as well as somatic mutations in the proofreading domain of POLE polymerase (p.P436H and p.L424V), which replicates the leading DNA strand. Most interestingly, we found, in both cancers, that the vast majority of mutations were consistent with the signature of POLE exo- , i.e. an abundance of C>A and C>T mutations, particularly in special contexts, on the leading strand. We showed that the fraction of mutations under positive selection among mutations in tumour suppressor genes is more than two-fold lower in ultramutated tumours than in other glioblastomas. Genetic analyses enabled the diagnosis of the two consanguineous childhood brain tumours as being due to a combination of PMS2 germline and POLE somatic variants, and confirmed them as bMMRD/POLE exo- disorders. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Brain Neoplasms/genetics , DNA Mismatch Repair/genetics , DNA Polymerase II/genetics , Genetic Predisposition to Disease , Germ-Line Mutation/genetics , Mismatch Repair Endonuclease PMS2/genetics , Brain Neoplasms/pathology , DNA/genetics , Female , Humans , Male , Poly-ADP-Ribose Binding Proteins
9.
Genome Res ; 27(8): 1336-1343, 2017 08.
Article in English | MEDLINE | ID: mdl-28512192

ABSTRACT

Mismatch repair (MMR) is one of the main systems maintaining fidelity of replication. Differences in correction of errors produced during replication of the leading and the lagging DNA strands were reported in yeast and in human cancers, but the causes of these differences remain unclear. Here, we analyze data on human cancers with somatic mutations in two of the major DNA polymerases, delta and epsilon, that replicate the genome. We show that these cancers demonstrate a substantial asymmetry of the mutations between the leading and the lagging strands. The direction of this asymmetry is the opposite between cancers with mutated polymerases delta and epsilon, consistent with the role of these polymerases in replication of the lagging and the leading strands in human cells, respectively. Moreover, the direction of strand asymmetry observed in cancers with mutated polymerase delta is similar to that observed in MMR-deficient cancers. Together, these data indicate that polymerase delta (possibly together with polymerase alpha) contributes more mismatches during replication than its leading-strand counterpart, polymerase epsilon; that most of these mismatches are repaired by the MMR system; and that MMR repairs about three times more mismatches produced in cells during lagging strand replication compared with the leading strand.


Subject(s)
DNA Mismatch Repair/genetics , DNA Polymerase III/genetics , DNA Polymerase II/genetics , DNA Replication , Mutation , Neoplasms/genetics , Exome , Humans , Mutation Rate , Whole Genome Sequencing
10.
Mol Biol Evol ; 34(5): 1100-1109, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28138076

ABSTRACT

Mutation rate varies along the human genome, and part of this variation is explainable by measurable local properties of the DNA molecule. Moreover, mutation rates differ between orthologous genomic regions of different species, but the drivers of this change are unclear. Here, we use data on human divergence from chimpanzee, human rare polymorphism, and human de novo mutations to predict the substitution rate at orthologous regions of non-human mammals. We show that the local mutation rates are very similar between human and apes, implying that their variation has a strong underlying cryptic component not explainable by the known genomic features. Mutation rates become progressively less similar in more distant species, and these changes are partially explainable by changes in the local genomic features of orthologous regions, most importantly, in the recombination rate. However, they are much more rapid, implying that the cryptic component underlying the mutation rate is more ephemeral than the known genomic features. These findings shed light on the determinants of mutation rate evolution. Key words: local mutation rate, molecular evolution, recombination rate.


Subject(s)
Mutation Rate , Animals , Biological Evolution , Conserved Sequence , DNA/genetics , Evolution, Molecular , Genome, Human/genetics , Genomics/methods , Hominidae/genetics , Humans , Mammals/genetics , Models, Genetic , Mutation , Pan troglodytes/genetics , Polymorphism, Genetic/genetics , Recombination, Genetic/genetics , Sequence Analysis, DNA/methods
11.
Genome Res ; 27(2): 175-184, 2017 02.
Article in English | MEDLINE | ID: mdl-27940951

ABSTRACT

APOBEC3A/B cytidine deaminase is responsible for the majority of cancerous mutations in a large fraction of cancer samples. However, its role in heritable mutagenesis remains very poorly understood. Recent studies have demonstrated that both in yeast and in human cancerous cells, most APOBEC3A/B-induced mutations occur on the lagging strand during replication and on the nontemplate strand of transcribed regions. Here, we use data on rare human polymorphisms, interspecies divergence, and de novo mutations to study germline mutagenesis and to analyze mutations at nucleotide contexts prone to attack by APOBEC3A/B. We show that such mutations occur preferentially on the lagging strand and on nontemplate strands of transcribed regions. Moreover, we demonstrate that APOBEC3A/B-like mutations tend to produce strand-coordinated clusters, which are also biased toward the lagging strand. Finally, we show that the mutation rate is increased 3' of C→G mutations to a greater extent than 3' of C→T mutations, suggesting pervasive trans-lesion bypass of the APOBEC3A/B-induced damage. Our study demonstrates that 20% of C→T and C→G mutations in the TpCpW context-where W denotes A or T, segregating as polymorphisms in human population-or 1.4% of all heritable mutations are attributable to APOBEC3A/B activity.


Subject(s)
Cytidine Deaminase/genetics , DNA Replication/genetics , Neoplasms/genetics , Proteins/genetics , Germ-Line Mutation/genetics , Humans , Mutagenesis , Mutation Rate , Saccharomyces cerevisiae/genetics
12.
Nat Genet ; 48(4): 398-406, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26950094

ABSTRACT

Basal cell carcinoma (BCC) of the skin is the most common malignant neoplasm in humans. BCC is primarily driven by the Sonic Hedgehog (Hh) pathway. However, its phenotypic variation remains unexplained. Our genetic profiling of 293 BCCs found the highest mutation rate in cancer (65 mutations/Mb). Eighty-five percent of the BCCs harbored mutations in Hh pathway genes (PTCH1, 73% or SMO, 20% (P = 6.6 × 10(-8)) and SUFU, 8%) and in TP53 (61%). However, 85% of the BCCs also harbored additional driver mutations in other cancer-related genes. We observed recurrent mutations in MYCN (30%), PPP6C (15%), STK19 (10%), LATS1 (8%), ERBB2 (4%), PIK3CA (2%), and NRAS, KRAS or HRAS (2%), and loss-of-function and deleterious missense mutations were present in PTPN14 (23%), RB1 (8%) and FBXW7 (5%). Consistent with the mutational profiles, N-Myc and Hippo-YAP pathway target genes were upregulated. Functional analysis of the mutations in MYCN, PTPN14 and LATS1 suggested their potential relevance in BCC tumorigenesis.


Subject(s)
Carcinoma, Basal Cell/genetics , Signal Transduction/radiation effects , Skin Neoplasms/genetics , Anilides/therapeutic use , Antineoplastic Agents/therapeutic use , Carcinogenesis/genetics , Carcinoma, Basal Cell/drug therapy , Carcinoma, Basal Cell/pathology , DNA Mutational Analysis , Disease Progression , Exome , Genetic Association Studies , Genetic Predisposition to Disease , HEK293 Cells , Humans , Mutation , Pyridines/therapeutic use , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Transcriptome
13.
Genome Res ; 26(2): 174-82, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26755635

ABSTRACT

APOBEC3A and APOBEC3B, cytidine deaminases of the APOBEC family, are among the main factors causing mutations in human cancers. APOBEC deaminates cytosines in single-stranded DNA (ssDNA). A fraction of the APOBEC-induced mutations occur as clusters ("kataegis") in single-stranded DNA produced during repair of double-stranded breaks (DSBs). However, the properties of the remaining 87% of nonclustered APOBEC-induced mutations, the source and the genomic distribution of the ssDNA where they occur, are largely unknown. By analyzing genomic and exomic cancer databases, we show that >33% of dispersed APOBEC-induced mutations occur on the lagging strand during DNA replication, thus unraveling the major source of ssDNA targeted by APOBEC in cancer. Although methylated cytosine is generally more mutation-prone than nonmethylated cytosine, we report that methylation reduces the rate of APOBEC-induced mutations by a factor of roughly two. Finally, we show that in cancers with extensive APOBEC-induced mutagenesis, there is almost no increase in mutation rates in late replicating regions (contrary to other cancers). Because late-replicating regions are depleted in exons, this results in a 1.3-fold higher fraction of mutations residing within exons in such cancers. This study provides novel insight into the APOBEC-induced mutagenesis and describes the peculiarity of the mutational processes in cancers with the signature of APOBEC-induced mutations.


Subject(s)
Cytidine Deaminase/physiology , Neoplasms/genetics , Cytosine/metabolism , DNA Methylation , DNA Mutational Analysis , DNA Replication , Exome , Humans , Mutagenesis , Mutation , Mutation Rate
14.
Mol Biol Evol ; 32(12): 3158-72, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26376651

ABSTRACT

Replication timing is an important determinant of germline mutation patterns, with a higher rate of point mutations in late replicating regions. Mechanisms underlying this association remain elusive. One of the suggested explanations is the activity of error-prone DNA polymerases in late-replicating regions. Polymerase zeta (pol ζ), an essential error-prone polymerase biased toward transversions, also has a tendency to produce dinucleotide mutations (DNMs), complex mutational events that simultaneously affect two adjacent nucleotides. Experimental studies have shown that pol ζ is strongly biased toward GC→AA/TT DNMs. Using primate divergence data, we show that the GC→AA/TT pol ζ mutational signature is the most frequent among DNMs, and its rate exceeds the mean rate of other DNM types by a factor of approximately 10. Unlike the overall rate of DNMs, the pol ζ signature drastically increases with the replication time in the human genome. Finally, the pol ζ signature is enriched in transcribed regions, and there is a strong prevalence of GC→TT over GC→AA DNMs on the nontemplate strand, indicating association with transcription. A recurrently occurring GC→TT DNM in HRAS and SOD1 genes causes the Costello syndrome and amyotrophic lateral sclerosis correspondently; we observe an approximately 1 kb long mutation hotspot enriched by transversions near these DNMs in both cases, suggesting a link between these diseases and pol ζ activity. This study uncovers the genomic preferences of pol ζ, shedding light on a novel cause of mutational heterogeneity along the genome.


Subject(s)
DNA Replication/physiology , Dinucleotide Repeats , Germ-Line Mutation , Animals , DNA Replication/genetics , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Genome, Human , Humans , Point Mutation , Primates , Protein Structure, Tertiary , Sequence Analysis, DNA
15.
Mol Biol Evol ; 32(10): 2775-83, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26163667

ABSTRACT

Populations of different species vary in the amounts of genetic diversity they possess. Nucleotide diversity π, the fraction of nucleotides that are different between two randomly chosen genotypes, has been known to range in eukaryotes between 0.0001 in Lynx lynx and 0.16 in Caenorhabditis brenneri. Here, we report the results of a comparative analysis of 24 haploid genotypes (12 from the United States and 12 from European Russia) of a split-gill fungus Schizophyllum commune. The diversity at synonymous sites is 0.20 in the American population of S. commune and 0.13 in the Russian population. This exceptionally high level of nucleotide diversity also leads to extreme amino acid diversity of protein-coding genes. Using whole-genome resequencing of 2 parental and 17 offspring haploid genotypes, we estimate that the mutation rate in S. commune is high, at 2.0 × 10(-8) (95% CI: 1.1 × 10(-8) to 4.1 × 10(-8)) per nucleotide per generation. Therefore, the high diversity of S. commune is primarily determined by its elevated mutation rate, although high effective population size likely also plays a role. Small genome size, ease of cultivation and completion of the life cycle in the laboratory, free-living haploid life stages and exceptionally high variability of S. commune make it a promising model organism for population, quantitative, and evolutionary genetics.


Subject(s)
Agaricales/genetics , Genetic Variation , Wood/microbiology , Nucleotides/genetics , Polymorphism, Genetic
16.
Am J Hum Genet ; 95(6): 660-74, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25480033

ABSTRACT

Gene expression levels can be subject to selection. We hypothesized that the age of gene origin is associated with expression constraints, given that it affects the level of gene integration into the functional cellular environment. By studying the genetic variation affecting gene expression levels (cis expression quantitative trait loci [cis-eQTLs]) and protein levels (cis protein QTLs [cis-pQTLs]), we determined that young, primate-specific genes are enriched in cis-eQTLs and cis-pQTLs. Compared to cis-eQTLs of old genes originating before the zebrafish divergence, cis-eQTLs of young genes have a higher effect size, are located closer to the transcription start site, are more significant, and tend to influence genes in multiple tissues and populations. These results suggest that the expression constraint of each gene increases throughout its lifespan. We also detected a positive correlation between expression constraints (approximated by cis-eQTL properties) and coding constraints (approximated by Ka/Ks) and observed that this correlation might be driven by gene age. To uncover factors associated with the increase in gene-age-related expression constraints, we demonstrated that gene connectivity, gene involvement in complex regulatory networks, gene haploinsufficiency, and the strength of posttranscriptional regulation increase with gene age. We also observed an increase in heritability of gene expression levels with age, implying a reduction of the environmental component. In summary, we show that gene age shapes key gene properties during evolution and is therefore an important component of genome function.


Subject(s)
Gene Expression Regulation , Genetic Variation , Genome/genetics , Proteins/genetics , Quantitative Trait Loci/genetics , Age Factors , Cell Line , Female , Fetal Blood , Fibroblasts , Gene Expression Profiling , Humans , Infant, Newborn , Logistic Models , Male , Organ Specificity , Polymorphism, Single Nucleotide , Proteins/metabolism , Transcription Initiation Site , Umbilical Cord
17.
Mol Biol Evol ; 31(11): 3016-25, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25135947

ABSTRACT

Recombination between double-stranded DNA molecules is a key genetic process which occurs in a wide variety of organisms. Usually, crossing-over (CO) occurs during meiosis between genotypes with 98.0-99.9% sequence identity, because within-population nucleotide diversity only rarely exceeds 2%. However, some species are hypervariable and it is unclear how CO can occur between genotypes with less than 90% sequence identity. Here, we study CO in Schizophyllum commune, a hypervariable cosmopolitan basidiomycete mushroom, a frequently encountered decayer of woody substrates. We crossed two haploid individuals, from the United States and from Russia, and obtained genome sequences for their 17 offspring. The average genetic distance between the parents was 14%, making it possible to study CO at very high resolution. We found reduced levels of linkage disequilibrium between loci flanking the CO sites indicating that they are mostly confined to hotspots of recombination. Furthermore, CO events preferentially occurred in regions under stronger negative selection, in particular within exons that showed reduced levels of nucleotide diversity. Apparently, in hypervariable species CO must avoid regions of higher divergence between the recombining genomes due to limitations imposed by the mismatch repair system, with regions under strong negative selection providing the opportunity for recombination. These patterns are opposite to those observed in a number of less variable species indicating that population genomics of hypervariable species may reveal novel biological phenomena.


Subject(s)
Crossing Over, Genetic , DNA/genetics , Genetic Variation , Schizophyllum/genetics , Base Composition , Base Pairing , Crosses, Genetic , DNA/chemistry , Genetic Loci , Haploidy , Linkage Disequilibrium , Selection, Genetic
18.
Mol Biol Evol ; 30(6): 1315-25, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23447710

ABSTRACT

Evolution of sequences mostly involves independent changes at different sites. However, substitutions at neighboring sites may co-occur as multinucleotide replacement events (MNRs). Here, we compare noncoding sequences of several species of primates, and of three species of Drosophila fruit flies, in a phylogenetic analysis of the replacements that occurred between species at nearby nucleotide sites. Both in primates and in Drosophila, the frequency of single-nucleotide replacements is substantially elevated within 10 nucleotides from other replacements that occurred on the same lineage but not on another lineage. The data imply that dinucleotide replacements (DNRs) affecting sites at distances of up to 10 nucleotides from each other are responsible for 2.3% of single-nucleotide replacements in primate genomes and for 5.6% in Drosophila genomes. Among these DNRs, 26% and 69%, respectively, are in fact parts of replacements of three or more trinucleotide replacements (TNRs). The plurality of MNRs affect nearby nucleotides, so that at least six times as many DNRs affect two adjacent nucleotide sites than sites 10 nucleotides apart. Still, approximately 60% of DNRs, and approximately 90% of TNRs, span distances more than two (or three) nucleotides. MNRs make a major contribution to the observed clustering of substitutions: In the human-chimpanzee comparison, DNRs are responsible for 50% of cases when two nearby replacements are observed on the human lineage, and TNRs are responsible for 83% of cases when three replacements at three immediately adjacent sites are observed on the human lineage. The prevalence of MNRs matches that is observed in data on de novo mutations and is also observed in the regions with the lowest sequence conservation, suggesting that MNRs mainly have mutational origin; however, epistatic selection and/or gene conversion may also play a role.


Subject(s)
Drosophila/genetics , Evolution, Molecular , Hominidae/genetics , Polymorphism, Genetic , Animals , Humans , Models, Genetic , Mutagenesis , Mutation , Phylogeny
19.
Mol Biol Evol ; 29(8): 1943-55, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22337862

ABSTRACT

Mutation rate varies between sites in the genome. Part of this variation can be explained by well-recognized short nucleotide contexts, but a large component of this variation remains cryptic. We used data on interspecies divergence and intraspecies polymorphism in Drosophila and Hominidae to analyze variation of the average rate of the 12 possible kinds of single-nucleotide mutations and in the transition/transversion ratio κ at single-nucleotide resolution. Both the average mutation rate and κ vary by a factor of ~3 between nucleotide sites. The characteristic scale of variation in κ is up to at least ~30 nucleotides in Drosophila and ~5 nucleotides in Hominidae. Genome segments with locally elevated mutation rates possess lower values of κ; however, a substantial fraction of variation in κ cannot be directly explained by the local mutation rates.


Subject(s)
Drosophila/genetics , Genome/genetics , Hominidae/genetics , Mutation/genetics , Animals , DNA, Intergenic/genetics , Databases, Genetic , Gene Frequency/genetics , Humans , Mutation Rate , Nucleotides/genetics , Phylogeny , Polymorphism, Single Nucleotide/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...