Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Eng ; 59(8): 2273-80, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22692863

ABSTRACT

Bioimpedance measurement applications range from the characterization of organic matter to the monitoring of biological signals and physiological parameters. Occasionally, multiple bioimpedances measured in different locations are combined in order to solve complex problems or produce enhanced physiological measures. The present multilead bioimpedance measurement methods are mainly focused on electrical impedance tomography. Systems designed to suit other multilead applications are lacking. In this study, a novel multilead bioimpedance measurement system was designed. This was particularly aimed at the time-domain analysis of bioimpedance magnitude. Frequency division multiplexing was used to avoid overlapping between excitation signals; undersampling, to reduce the hardware requirements; and power isolated active current sources, to reduce the electrical interactions between leads. These theoretical concepts were implemented on a prototype device. The prototype was tested on equivalent circuits and a saline tank in order to assess excitation signal interferences and electrical interactions between leads. The results showed that the proposed techniques are functional and the system's validity was demonstrated on a real application, multilead impedance pneumography. Potential applications and further improvements were discussed. It was concluded that the novel approach potentially enables accurate and relatively low-power multilead bioimpedance measurements systems.


Subject(s)
Cardiography, Impedance/instrumentation , Cardiography, Impedance/methods , Signal Processing, Computer-Assisted , Computer Simulation , Electric Impedance , Entropy , Humans , Respiratory Function Tests
2.
Physiol Meas ; 32(3): 337-45, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21321385

ABSTRACT

The transthoracic electrical impedance signal originates from the cardiac and respiratory functions. In impedance pneumography (IP) the lung function is assessed and the cardiac impedance signal, cardiogenic oscillations (CGOs), is considered an additive noise in the measured signal. In order to accurately determine pulmonary flow parameters from the signal, the CGO needs to be attenuated without distorting the respiratory part of the signal. We assessed the suitability of a filtering technique, originally described by Schuessler et al (1998 Ann. Biomed. Eng. 26 260-7) for an esophageal pressure signal, for CGO attenuation in the IP signal. The technique is based on ensemble averaging the CGO events using the electrocardiogram (ECG) R-wave as the trigger signal. Lung volume is known to affect the CGO waveforms. Therefore we modified the filtering method to produce a lung volume-dependent parametric model of the CGO waveform. A simultaneous recording of ECG, IP and pneumotachograph (PNT) was conducted on 41 healthy, sitting adults. The performance of the proposed method was compared to a low-pass filter and a Savitzky-Golay filter in terms of CGO attenuation and respiratory signal distortion. The method was found to be excellent, exhibiting CGO attenuation of 35.0±12.5 dB (mean±SD) and minimal distortion of the respiratory part of the impedance signal.


Subject(s)
Electrocardiography/methods , Respiratory Function Tests/methods , Adult , Electric Impedance , Female , Heart Rate/physiology , Humans , Male , Signal Processing, Computer-Assisted , Tidal Volume/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...