Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Cell Cardiol ; 62: 8-17, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23643588

ABSTRACT

RATIONALE: Stimulation of ß3-adrenoreceptors (ß3-AR) blunts contractility and improves chronic left ventricular function in hypertrophied and failing hearts in a neuronal nitric oxide synthase (nNOS) dependent manner. nNOS can be regulated by post-translational modification of stimulatory phosphorylation residue Ser1412 and inhibitory residue Ser847. However, the role of phosphorylation of these residues in cardiomyocytes and ß3-AR protective signaling has yet to be explored. OBJECTIVE: We tested the hypothesis that ß3-AR regulation of myocyte stress requires changes in nNOS activation mediated by differential nNOS phosphorylation. METHODS AND RESULTS: Endothelin (ET-1) or norepinephrine induced hypertrophy in rat neonatal ventricular cardiomyocytes (NRVMs) was accompanied by increased ß3-AR gene expression. Co-administration of the ß3-AR agonist BRL-37433 (BRL) reduced cell size and reactive oxygen species (ROS) generation, while augmenting NOS activity. BRL-dependent augmentation of NOS activity and ROS suppression due to NE were blocked by inhibiting nNOS (L-VNIO). BRL augmented nNOS phosphorylation at Ser1412 and dephosphorylation at Ser847. Cells expressing constitutively dephosphorylated Ser1412A or phosphorylated Ser847D nNOS mutants displayed reduced nNOS activity and a lack of BRL modulation. BRL also failed to depress ROS from NE in cells with nNOS-Ser847D. Inhibiting Akt decreased BRL-induced nNOS-Ser1412 phosphorylation and NOS activation, whereas Gi/o blockade blocked BRL-regulation of both post-translational modifications, preventing enhancement of NOS activity and ROS reduction. BRL resulted in near complete dephosphorylation of Ser847 and a moderate rise in Ser1412 phosphorylation in mouse myocardium exposed to chronic pressure-overload. CONCLUSION: ß3-AR regulates myocardial NOS activity and ROS via activation of nNOS involving reciprocal changes in phosphorylation at two regulatory sites. These data identify a novel and potent anti-oxidant and anti-hypertrophic pathway due to nNOS post-translational modification that is coupled to ß3-AR receptor stimulation.


Subject(s)
Antioxidants/pharmacology , Muscle Cells/metabolism , Nitric Oxide Synthase Type I/metabolism , Receptors, Adrenergic, beta-3/metabolism , Adrenergic beta-Agonists/pharmacology , Animals , Cells, Cultured , Ethanolamines/pharmacology , Immunoprecipitation , Male , Mice , Mice, Inbred C57BL , Muscle Cells/drug effects , Phosphorylation , Polymerase Chain Reaction , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL
...