Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
J Leukoc Biol ; 114(6): 666-671, 2023 11 24.
Article in English | MEDLINE | ID: mdl-37625009

ABSTRACT

Microbial infection is characterized by release of multiple proinflammatory chemokines that direct neutrophils to the insult site. How collective function of these chemokines orchestrates neutrophil recruitment is not known. Here, we characterized the role for heterodimer and show that the Cxcl1-Cxcl2 heterodimer is a potent neutrophil chemoattractant in mice and can recruit more neutrophils than the individual chemokines. Chemokine-mediated neutrophil recruitment is determined by Cxcr2 receptor signaling, Cxcr2 endocytosis, and binding to glycosaminoglycans. We have now determined heterodimer's Cxcr2 activity using cellular assays and Cxcr2 density in blood and recruited neutrophils in heterodimer-treated mice. We have shown that the heterodimer binds glycosaminoglycans with higher affinity and more efficiently than Cxcl1 or Cxcl2. These data collectively indicate that optimal glycosaminoglycan interactions and dampened receptor activity acting in concert in a dynamic fashion promote heterodimer-mediated robust neutrophil recruitment. We propose that this could play a critical role in combating infection.


Subject(s)
Chemokine CXCL1 , Chemokine CXCL2 , Neutrophils , Animals , Mice , Chemokine CXCL1/metabolism , Chemokine CXCL2/metabolism , Glycosaminoglycans/metabolism , Interleukin-8/metabolism , Neutrophil Infiltration , Neutrophils/metabolism , Receptors, Interleukin-8B/metabolism
2.
Cell Mol Life Sci ; 80(1): 35, 2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36622452

ABSTRACT

Chemokine CXCL8 is a key facilitator of the human host immune response, mediating neutrophil migration, and activation at the site of infection and injury. The oxidative burst is an important effector mechanism which leads to the generation of reactive nitrogen species (RNS), including peroxynitrite. The current study was performed to determine the potential for nitration to alter the biological properties of CXCL8 and its detection in human disease. Here, we show peroxynitrite nitrates CXCL8 and thereby regulates neutrophil migration and activation. The nitrated chemokine was unable to induce transendothelial neutrophil migration in vitro and failed to promote leukocyte recruitment in vivo. This reduced activity is due to impairment in both G protein-coupled receptor signaling and glycosaminoglycan binding. Using a novel antibody, nitrated CXCL8 was detected in bronchoalveolar lavage samples from patients with pneumonia. These findings were validated by mass spectrometry. Our results provide the first direct evidence of chemokine nitration in human pathophysiology and suggest a natural mechanism that limits acute inflammation.


Subject(s)
Interleukin-8 , Peroxynitrous Acid , Humans , Chemokines/metabolism , Inflammation/metabolism , Interleukin-8/metabolism , Interleukin-8/pharmacology , Leukocytes/metabolism , Neutrophils , Peroxynitrous Acid/pharmacology
3.
Nat Plants ; 8(12): 1453-1466, 2022 12.
Article in English | MEDLINE | ID: mdl-36522450

ABSTRACT

Chromatin architecture and transcription factor (TF) binding underpin cell-fate specification during development, but their mutual regulatory relationships remain unclear. Here we report an atlas of dynamic chromatin landscapes during stomatal cell-lineage progression, in which sequential cell-state transitions are governed by lineage-specific bHLH TFs. Major reprogramming of chromatin accessibility occurs at the proliferation-to-differentiation transition. We discover novel co-cis regulatory elements (CREs) signifying the early precursor stage, BBR/BPC (GAGA) and bHLH (E-box) motifs, where master-regulatory bHLH TFs, SPEECHLESS and MUTE, consecutively bind to initiate and terminate the proliferative state, respectively. BPC TFs complex with MUTE to repress SPEECHLESS expression through a local deposition of repressive histone marks. We elucidate the mechanism by which cell-state-specific heterotypic TF complexes facilitate cell-fate commitment by recruiting chromatin modifiers via key co-CREs.


Subject(s)
Chromatin , Trans-Activators , Transcription Factors/genetics , Transcription Factors/metabolism , Cell Differentiation
4.
Int J Mol Sci ; 23(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35409212

ABSTRACT

Pathogenic bacteria causing human rickettsioses, transmitted in nature by arthropod vectors, primarily infect vascular endothelial cells lining the blood vessels, resulting in 'endothelial activation' and onset of innate immune responses. Nucleotide second messengers are long presumed to be the stimulators of type I interferons, of which bacterial cyclic-di-GMP (c-di-GMP) has been implicated in multiple signaling pathways governing communication with other bacteria and host cells, yet its importance in the context of rickettsial interactions with the host has not been investigated. Here, we report that all rickettsial genomes encode a putative diguanylate cyclase pleD, responsible for the synthesis of c-di-GMP. In silico analysis suggests that although the domain architecture of PleD is apparently well-conserved among different rickettsiae, the protein composition and sequences likely vary. Interestingly, cloning and sequencing of the pleD gene from virulent (Sheila Smith) and avirulent (Iowa) strains of R. rickettsii reveals a nonsynonymous substitution, resulting in an amino acid change (methionine to isoleucine) at position 236. Additionally, a previously reported 5-bp insertion in the genomic sequence coding for pleD (NCBI accession: NC_009882) was not present in the sequence of our cloned pleD from R. rickettsii strain Sheila Smith. In vitro infection of HMECs with R. rickettsii (Sheila Smith), but not R. rickettsii (Iowa), resulted in dynamic changes in the levels of pleD up to 24 h post-infection. These findings thus provide the first evidence for the potentially important role(s) of c-di-GMP in the determination of host-cell responses to pathogenic rickettsiae. Further studies into molecular mechanisms through which rickettsial c-di-GMP might regulate pathogen virulence and host responses should uncover the contributions of this versatile bacterial second messenger in disease pathogenesis and immunity to human rickettsioses.


Subject(s)
Endothelial Cells , Rickettsia , Bacterial Proteins/metabolism , Cyclic GMP/analogs & derivatives , Cyclic GMP/metabolism , Endothelial Cells/metabolism , Gene Expression Regulation, Bacterial , Humans , Rickettsia/genetics , Rickettsia rickettsii , Virulence
5.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35173013

ABSTRACT

Multicellular organisms develop specialized cell types to achieve complex functions of tissues and organs. The basic helix-loop-helix (bHLH) proteins act as master regulatory transcription factors of such specialized cell types. Plant stomata are cellular valves in the aerial epidermis for efficient gas exchange and water control. Stomatal differentiation is governed by sequential actions of three lineage-specific bHLH proteins, SPEECHLESS (SPCH), MUTE, and FAMA, specifying initiation and proliferation, commitment, and terminal differentiation, respectively. A broadly expressed bHLH, SCREAM (SCRM), heterodimerizes with SPCH/MUTE/FAMA and drives stomatal differentiation via switching its partners. Yet nothing is known about its heterodimerization properties or partner preference. Here, we report the role of the SCRM C-terminal ACT-like (ACTL) domain for heterodimerization selectivity. Our intragenic suppressor screen of a dominant scrm-D mutant identified the ACTL domain as a mutation hotspot. Removal of this domain or loss of its structural integrity abolishes heterodimerization with MUTE, but not with SPCH or FAMA, and selectively abrogates the MUTE direct target gene expression. Consequently, the scrm-D ACTL mutants confer massive clusters of arrested stomatal precursor cells that cannot commit to differentiation when redundancy is removed. Structural and biophysical studies further show that SPCH, MUTE, and FAMA also possess the C-terminal ACTL domain, and that ACTL•ACTL heterodimerization is sufficient for partner selectivity. Our work elucidates a role for the SCRM ACTL domain in the MUTE-governed proliferation-differentiation switch and suggests mechanistic insight into the biological function of the ACTL domain, a module uniquely associated with plant bHLH proteins, as a heterodimeric partner selectivity interface.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Plant Proteins/metabolism , Plant Stomata/metabolism , Dimerization
6.
Methods Mol Biol ; 2303: 13-23, 2022.
Article in English | MEDLINE | ID: mdl-34626366

ABSTRACT

Solution nuclear magnetic resonance (NMR) spectroscopy and, in particular, chemical shift perturbation (CSP) titration experiments are ideally suited for mapping and characterizing the binding interface of macromolecular complexes. 1H-15N-HSQC-based CSP studies have become the method of choice due to their simplicity, short-time requirements, and minimal working knowledge of NMR. CSP studies for characterizing protein-glycosaminoglycan (GAG) interactions can be challenging due to binding-induced aggregation/precipitation and/or poor quality data. In this chapter, we discuss how optimizing experimental conditions such as protein concentration, choice of buffer pH, ionic strength, and GAG size, as well as sensitivity of NMR instrumentation can overcome these roadblocks to obtain meaningful structural insights into protein-GAG interactions.


Subject(s)
Glycosaminoglycans/chemistry , Binding Sites , Magnetic Resonance Spectroscopy , Nuclear Magnetic Resonance, Biomolecular , Protein Binding
7.
Methods Mol Biol ; 2303: 307-317, 2022.
Article in English | MEDLINE | ID: mdl-34626389

ABSTRACT

It has now become increasingly clear that a complete atomic description of how biomacromolecules recognize each other requires knowledge not only of the structures of the complexes but also of how kinetics and thermodynamics drive the binding process. In particular, such knowledge is lacking for protein-glycosaminoglycan (GAG) complexes. Isothermal titration calorimetry (ITC) is the only technique that can provide all of the thermodynamic parameters-enthalpy, entropy, free energy (binding constant), and stoichiometry-from a single experiment. Here we describe different factors that must be taken into consideration in carrying out ITC titrations to obtain meaningful thermodynamic data of protein-GAG interactions.


Subject(s)
Thermodynamics , Calorimetry , Entropy , Glycosaminoglycans , Protein Binding
8.
Biochem J ; 478(5): 1009-1021, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33463672

ABSTRACT

Chemokines Cxcl1/KC and Cxcl2/MIP2 play a crucial role in coordinating neutrophil migration to the insult site. Chemokines' recruitment activity is regulated by monomer-dimer equilibrium and binding to glycosaminoglycans (GAGs). GAG chains exist as covalently linked to core proteins of proteoglycans (PGs) and also as free chains due to cleavage by heparanases during the inflammatory response. Compared with free GAGs, binding to GAGs in a PG is influenced by their fixed directionality due to covalent linkage and restricted mobility. GAG interactions impact chemokine monomer/dimer levels, chemotactic and haptotactic gradients, life time, and presentation for receptor binding. Here, we show that Cxcl1 and Cxcl2 also form heterodimers. Using a disulfide-trapped Cxcl1-Cxcl2 heterodimer, we characterized its binding to free heparin using nuclear magnetic resonance and isothermal titration calorimetry, and to immobilized heparin and heparan sulfate using surface plasmon resonance. These data, in conjunction with molecular docking, indicate that the binding characteristics such as geometry and stoichiometry of the heterodimer are different between free and immobilized GAGs and are also distinctly different from those of the homodimers. We propose that the intrinsic asymmetry of the heterodimer structure, along with differences in its binding to PG GAGs and free GAGs, regulate chemokine function.


Subject(s)
Chemokine CXCL1/chemistry , Chemokine CXCL1/metabolism , Chemokine CXCL2/chemistry , Chemokine CXCL2/metabolism , Heparin/chemistry , Heparin/metabolism , Protein Multimerization , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Protein Conformation , Signal Transduction
9.
J Leukoc Biol ; 109(4): 777-791, 2021 04.
Article in English | MEDLINE | ID: mdl-32881070

ABSTRACT

Chemokines play a crucial role in combating microbial infection by recruiting blood neutrophils to infected tissue. In mice, the chemokines Cxcl1/KC and Cxcl2/MIP2 fulfill this role. Cxcl1 and Cxcl2 exist as monomers and dimers, and exert their function by activating the Cxcr2 receptor and binding glycosaminoglycans (GAGs). Here, we characterized Cxcr2 G protein and ß-arrestin activities, and GAG heparan sulfate (HS) interactions of Cxcl1 and Cxcl2 and of the trapped dimeric variants. To understand how Cxcr2 and GAG interactions impact in vivo function, we characterized their neutrophil recruitment activity to the peritoneum, Cxcr2 and CD11b levels on peritoneal and blood neutrophils, and transport profiles out of the peritoneum. Cxcl2 variants compared with Cxcl1 variants were more potent for Cxcr2 activity. Native Cxcl1 compared with native Cxcl2 and dimers compared with native proteins bound HS with higher affinity. Interestingly, recruitment activity between native Cxcl1 and Cxcl2, between dimers, and between the native protein and the dimer could be similar or very different depending on the dose or the time point. These data indicate that peritoneal neutrophil recruitment cannot be solely attributed to Cxcr2 or GAG interactions, and that the relationship between recruited neutrophils, Cxcr2 activation, GAG interactions, and chemokine levels is complex and highly context dependent. We propose that the ability of Cxcl1 and Cxcl2 to reversibly exist as monomers and dimers and differences in their Cxcr2 activity and GAG interactions coordinate neutrophil recruitment and activation, which play a critical role for successful resolution of inflammation.


Subject(s)
Chemokine CXCL1/metabolism , Chemokine CXCL2/metabolism , Glycosaminoglycans/metabolism , Neutrophil Infiltration , Receptors, Interleukin-8B/metabolism , Amino Acid Sequence , Animals , Bone Marrow Cells/cytology , CD11b Antigen/metabolism , Female , Kinetics , Mice, Inbred BALB C , Peritoneum/cytology , Protein Binding , Protein Multimerization , Protein Transport , Receptors, Interleukin-8B/chemistry
10.
iScience ; 23(12): 101858, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33344917

ABSTRACT

Chemokines are unusual class-A G protein-coupled receptor agonists because of their large size (∼10 kDa) and binding at two distinct receptor sites: N-terminal domain (Site-I, unique to chemokines) and a groove defined by extracellular loop/transmembrane helices (Site-II, shared with all small molecule class-A ligands). Structures and sequence analysis reveal that the receptor N-terminal domains (N-domains) are flexible and contain intrinsic disorder. Using a hybrid NMR-MD approach, we characterized the role of Site-I interactions for the CXCL8-CXCR1 pair. NMR data indicate that the CXCR1 N-domain becomes structured on binding and that the binding interface is extensive with 30% CXCL8 residues participating in this initial interaction. MD simulations indicate that CXCL8 bound at Site-I undergoes extensive reorganization on engaging Site-II with several residues initially engaged at Site-I also engaging at Site-II. We conclude that structural plasticity of Site-I interactions plays an active role in driving ligand recognition by a chemokine receptor.

11.
Biol Chem ; 401(2): 249-262, 2020 02 25.
Article in English | MEDLINE | ID: mdl-31299006

ABSTRACT

Rickettsial species have independently lost several genes owing to reductive evolution while retaining those predominantly implicated in virulence, survival, and biosynthetic pathways. In this study, we have identified a previously uncharacterized Rickettsia conorii gene RC0497 as an N-acetylmuramoyl-L-alanine amidase constitutively expressed during infection of cultured human microvascular endothelial cells at the levels of both mRNA transcript and encoded protein. A homology-based search of rickettsial genomes reveals that RC0497 homologs, containing amidase_2 family and peptidoglycan binding domains, are highly conserved among the spotted fever group (SFG) rickettsiae. The recombinant RC0497 protein exhibits α-helix secondary structure, undergoes a conformational change in the presence of zinc, and exists as a dimer at higher concentrations. We have further ascertained the enzymatic activity of RC0497 via demonstration of its ability to hydrolyze Escherichia coli peptidoglycan. Confocal microscopy on E. coli expressing RC0497 and transmission immunoelectron microscopy of R. conorii revealed its localization predominantly to the cell wall, septal regions of replicating bacteria, and the membrane of vesicles pinching off the cell wall. In summary, we have identified and functionally characterized RC0497 as a peptidoglycan hydrolase unique to spotted fever rickettsiae, which may potentially serve as a novel moonlighting protein capable of performing multiple functions during host-pathogen interactions.


Subject(s)
Amidohydrolases/isolation & purification , Amidohydrolases/metabolism , Peptidoglycan/metabolism , Rickettsia conorii/enzymology , Amidohydrolases/chemistry , Peptidoglycan/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Species Specificity
12.
J Biol Chem ; 294(43): 15650-15661, 2019 10 25.
Article in English | MEDLINE | ID: mdl-31455633

ABSTRACT

Chemokines play diverse roles in human pathophysiology, ranging from trafficking leukocytes and immunosurveillance to the regulation of metabolism and neural function. Chemokine function is intimately coupled to binding tissue glycosaminoglycans (GAGs), heparan sulfate (HS), chondroitin sulfate (CS), and dermatan sulfate (DS). Currently, very little is known about how the structural features and sequences of a given chemokine, the structure and sulfation pattern of a given GAG, and structural differences among GAGs and among chemokines impact binding interactions. In this study, we used solution NMR spectroscopy to characterize the binding interactions of two related neutrophil-activating chemokines, CXCL1 and CXCL5, with HS, CS, and DS. For both chemokines, the dimer bound all three GAGs with higher affinity than did the monomer, and affinities of the chemokines for CS and DS were lower than for HS. NMR-based structural models reveal diverse binding geometries and show that the binding surfaces for each of the three GAGs were different between the two chemokines. However, a given chemokine had similar binding interactions with CS and DS that were different from HS. Considering the fact that CXCL1 and CXCL5 activate the same CXCR2 receptor, we conclude that GAG interactions play a role in determining the nature of chemokine gradients, levels of free chemokine available for receptor activation, how chemokines bind their receptors, and that differences in these interactions determine chemokine-specific function.


Subject(s)
Chemokines/chemistry , Chemokines/metabolism , Chondroitin Sulfates/metabolism , Dermatan Sulfate/metabolism , Heparitin Sulfate/metabolism , Chondroitin Sulfates/chemistry , Dermatan Sulfate/chemistry , Heparitin Sulfate/chemistry , Models, Molecular , Protein Binding , Proton Magnetic Resonance Spectroscopy
13.
Biochemistry ; 57(41): 5969-5977, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30230320

ABSTRACT

Hydrogen-bonding and ionic interactions play fundamental roles in macromolecular recognition and function. In contrast to lysines and arginines, how histidines mediate these interactions is less well-understood due to the unique properties of its side chain imidazole that include an aromatic ring with two titratable nitrogens, a p Ka that can vary significantly, and the ability to exist in three distinct forms: protonated imidazolium and two tautomeric neutral (Nδ1 and Nε2) states. Here, we characterized the structural features of histidines in the chemokines CXCL8 and CXCL1 in the free, GAG heparin-bound, and CXCR2 receptor N-terminal domain-bound states using solution NMR spectroscopy. CXCL8 and CXCL1 share two conserved histidines, one in the N-loop and the other in the 30s loop. In CXCL8, both histidines exist in the Nε2 tautomeric state in the free, GAG-bound, and receptor-bound forms. On the other hand, in unliganded CXCL1, each of the two histidines exists in two states, as the neutral Nε2 tautomer and charged imidazolium. Further, both histidines exclusively exist as the imidazolium in the GAG-bound and as the Nε2 tautomer in the receptor-bound forms. The N-loop histidine alone in both chemokines is involved in direct GAG and receptor interactions, indicating the role of the 30s loop varies between the chemokines. Our observation that the structural features of conserved histidines and their functional role in two related proteins can be quite different is novel. We further propose that directly probing the imidazole structural features is essential to fully appreciate the molecular basis of histidine function.


Subject(s)
Chemokine CXCL1/chemistry , Heparin/chemistry , Interleukin-8/chemistry , Receptors, Interleukin-8B/chemistry , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Histidine/chemistry , Histidine/genetics , Histidine/metabolism , Humans , Interleukin-8/genetics , Interleukin-8/metabolism , Nuclear Magnetic Resonance, Biomolecular , Protein Domains , Protein Structure, Secondary , Receptors, Interleukin-8B/genetics , Receptors, Interleukin-8B/metabolism
14.
J Biol Chem ; 293(46): 17817-17828, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30257866

ABSTRACT

Keratinocyte-derived chemokine (KC or mCXCL1) and macrophage inflammatory protein 2 (MIP2 or mCXCL2) play nonredundant roles in trafficking blood neutrophils to sites of infection and injury. The functional responses of KC and MIP2 are intimately coupled to their interactions with glycosaminoglycans (GAGs). GAG interactions orchestrate chemokine concentration gradients and modulate receptor activity, which together regulate neutrophil trafficking. Here, using NMR, molecular dynamics (MD) simulations, and isothermal titration calorimetry (ITC), we characterized the molecular basis of KC and MIP2 binding to the GAG heparin. Both chemokines reversibly exist as monomers and dimers, and the NMR analysis indicates that the dimer binds heparin with higher affinity. The ITC experiments indicate a stoichiometry of two GAGs per KC or MIP2 dimer and that the enthalpic and entropic contributions vary significantly between the two chemokine-heparin complexes. NMR-based structural models of heparin-KC and heparin-MIP2 complexes reveal that different combinations of residues from the N-loop, 40s turn, ß3-strand, and C-terminal helix form a binding surface within a monomer and that both conserved residues and residues unique to a particular chemokine mediate the binding interactions. MD simulations indicate significant residue-specific differences in their contribution to binding and affinity for a given chemokine and between chemokines. On the basis of our observations that KC and MIP2 bind to GAG via distinct molecular interactions, we propose that the differences in these GAG interactions lead to differences in neutrophil recruitment and play nonoverlapping roles in resolution of inflammation.


Subject(s)
Chemokine CXCL1/metabolism , Chemokine CXCL2/metabolism , Heparin/metabolism , Animals , Binding Sites , Calorimetry , Chemokine CXCL1/chemistry , Chemokine CXCL2/chemistry , Heparin/chemistry , Hydrogen Bonding , Mice , Molecular Dynamics Simulation , Protein Binding , Thermodynamics
15.
PLoS One ; 13(4): e0194891, 2018.
Article in English | MEDLINE | ID: mdl-29641592

ABSTRACT

Ehrlichia chaffeensis, the causative agent of human monocytotropic ehrlichiosis, secretes several effector proteins that bind host DNA to modulate host gene expression. The tandem repeat protein 120 (TRP120), one of the largest effector proteins, has four nearly identical tandem repeat (TR) regions that each consists of 80 amino acids. In addition to playing a role in ehrlichial binding and internalization, TRP120 translocates to the host nucleus where it is thought to function as a transcription factor that modulates gene expression. However, sequence analysis of TRP120 does not identify the presence of DNA-binding or trans-activation domains typical of classical eukaryotic transcription factors. Thus, the mechanism by which TRP120 binds DNA and modulates gene expression remains elusive. Herein, we expressed the TR regions of the TRP120 protein, and characterized its solution structure and ability to bind DNA. TRP120, expressed as either a one or two TR repeat, is a monomer in solution, and is mostly disordered as determined by circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy. Using NMR spectroscopy, we further show that the 1 TR construct selectively binds GC-rich DNA. Although low pH was required for TRP120 TR-DNA interaction, acidic pH alone does not induce any significant structural changes in the TR region. This suggests that TRP120 folds into an ordered structure upon forming a protein-DNA complex, and thus folding of TRP120 TR is coupled with DNA binding.


Subject(s)
Bacterial Proteins/physiology , DNA-Binding Proteins/physiology , Ehrlichia chaffeensis/genetics , Ehrlichiosis/microbiology , Tandem Repeat Sequences , Active Transport, Cell Nucleus , Antibodies, Bacterial/blood , Cell Nucleus/metabolism , Circular Dichroism , DNA/metabolism , Host-Pathogen Interactions , Humans , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Microbial Viability , Protein Domains , Protein Folding , Trans-Activators/metabolism , Transcriptional Activation , Ultraviolet Rays
16.
Xenotransplantation ; 25(2): e12385, 2018 03.
Article in English | MEDLINE | ID: mdl-29427404

ABSTRACT

BACKGROUND: Human neutrophils are sequestered by pig lung xenografts within minutes during ex vivo perfusion. This phenomenon is not prevented by pig genetic modifications that remove xeno-antigens or added human regulatory molecules intended to down-regulate activation of complement and coagulation pathways. This study investigated whether recipient and donor interleukin-8 (IL-8), a chemokine known to attract and activate neutrophils during inflammation, is elaborated in the context of xenogeneic injury, and whether human or pig IL-8 promote the adhesion of human neutrophils in in vitro xenograft models. METHODS: Plasma levels of pig, human or non-human primate (NHP) IL-8 from ex vivo pig lung perfusion experiments (n = 10) and in vivo pig-to-baboon lung transplantation in baboons (n = 22) were analysed by ELISA or Luminex. Human neutrophils stimulated with human or pig IL-8 were analysed for CD11b expression, CD18 activation, oxidative burst and adhesion to resting or TNF-activated endothelial cells (EC) evaluated under static and flow (Bioflux) conditions. For some experiments, human neutrophils were incubated with Reparixin (IL-8/CXCL8 receptor blocker) and then analysed as in the in vitro experiments mentioned above. RESULTS: Plasma levels of pig IL-8 (~6113 pg/mL) increased more than human (~1235 pg/mL) between one and four hours after initiation of ex vivo lung perfusion. However, pig IL-8 levels remained consistently low (<60 pg/mL) and NHP IL-8 plasma levels increased by ~2000 pg/mL after four hours in a pig-to-baboon lung xenotransplantation. In vitro, human neutrophils' CD11b expression, CD18 activation and oxidative burst all increased in a dose-dependent manner following exposure to either pig or human IL-8, which also were associated with increased adhesion to EC in both static and flow conditions. Reparixin inhibited human neutrophil activation by both pig and human IL-8 in a dose-dependent fashion. At 0.1 mg/mL, Reparixin inhibited the adhesion of IL-8-activated human neutrophils to pAECs by 84 ± 2.5%. CONCLUSIONS: Pig IL-8 increased in an ex vivo model of pig-to-human lung xenotransplantation but is not detected in vivo, whereas human or NHP IL-8 is elevated to a similar degree in both models. Both pig and human IL-8 activate human neutrophils and increase their adhesion to pig aortic ECs, a process significantly inhibited by the addition of Reparixin to human neutrophils. This work implicates IL-8, whether of pig or human origin, as a possible factor mediating in lung xenograft inflammation and injury and supports the evaluation of therapeutic targeting of this pathway in the context of xenotransplantation.


Subject(s)
Endothelial Cells/immunology , Heterografts/metabolism , Interleukin-8/metabolism , Neutrophils/immunology , Transplantation, Heterologous , Animals , Chemokines/metabolism , Humans , Inflammation/immunology , Papio , Swine
17.
Analyst ; 143(3): 635-638, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29292440

ABSTRACT

Two NMR observables, the NζH3+ peak in the HISQC spectrum and Nζ chemical shift difference between the free and heparin-bound forms, can identify binding-interface lysines in protein-heparin complexes. Unlike backbone chemical shifts, these direct probes are stringent and are less prone to either false positives or false negatives.


Subject(s)
Heparin/chemistry , Lysine/analysis , Magnetic Resonance Spectroscopy , Amino Acid Sequence , Chemokine CXCL1/chemistry , Chemokine CXCL5/chemistry , Humans , Models, Molecular , Protein Structure, Tertiary
18.
J Histochem Cytochem ; 66(4): 229-239, 2018 04.
Article in English | MEDLINE | ID: mdl-29290145

ABSTRACT

Circulating neutrophils, rapidly recruited in response to microbial infection, form the first line in host defense. Humans express ~50 chemokines, of which a subset of seven chemokines, characterized by the conserved "Glu-Leu-Arg" motif, mediate neutrophil recruitment. Neutrophil-activating chemokines (NACs) share similar structures, exist as monomers and dimers, activate the CXCR2 receptor on neutrophils, and interact with tissue glycosaminoglycans (GAGs). Considering cellular assays have shown that NACs have similar CXCR2 activity, the question has been and remains, why do humans express so many NACs? In this review, we make the case that NACs are not redundant and that distinct GAG interactions determine chemokine-specific in vivo functions. Structural studies have shown that the GAG-binding interactions of NACs are distinctly different, and that conserved and specific residues in the context of structure determine geometries that could not have been predicted from sequences alone. Animal studies indicate recruitment profiles of monomers and dimers are distinctly different, monomer-dimer equilibrium regulates recruitment, and that recruitment profiles vary between chemokines and between tissues, providing evidence that GAG interactions orchestrate neutrophil recruitment. We propose in vivo GAG interactions impact several chemokine properties including gradients and lifetime, and that these interactions fine-tune and define the functional response of each chemokine that can vary between different cell and tissue types for successful resolution of inflammation.


Subject(s)
Chemokines/immunology , Glycosaminoglycans/immunology , Immunity, Innate , Inflammation/immunology , Neutrophil Infiltration , Neutrophils/immunology , Amino Acid Sequence , Animals , Cell Movement , Chemokines/chemistry , Humans , Models, Molecular , Neutrophils/cytology , Sequence Alignment
19.
Front Immunol ; 8: 1248, 2017.
Article in English | MEDLINE | ID: mdl-29038657

ABSTRACT

Platelet-derived chemokine CXCL7 (also known as NAP-2) plays a crucial role in orchestrating neutrophil recruitment in response to vascular injury. CXCL7 exerts its function by activating the CXC chemokine receptor 2 (CXCR2) receptor and binding sulfated glycosaminoglycans (GAGs) that regulate receptor activity. CXCL7 exists as monomers, dimers, and tetramers, and previous studies have shown that the monomer dominates at lower and the tetramer at higher concentrations. These observations then raise the question: what, if any, is the role of the dimer? In this study, we make a compelling observation that the dimer is actually the favored form in the GAG-bound state. Further, we successfully characterized the structural basis of dimer binding to GAG heparin using solution nuclear magnetic resonance (NMR) spectroscopy. The chemical shift assignments were obtained by exploiting heparin binding-induced NMR spectral changes in the WT monomer and dimer and also using a disulfide-linked obligate dimer. We observe that the receptor interactions of the dimer are similar to the monomer and that heparin-bound dimer is occluded from receptor interactions. Cellular assays also show that the heparin-bound CXCL7 is impaired for CXCR2 activity. We conclude that the dimer-GAG interactions play an important role in neutrophil-platelet crosstalk, and that these interactions regulate gradient formation and the availability of the free monomer for CXCR2 activation and intrathrombus neutrophil migration to the injury site.

20.
Int J Mol Sci ; 18(8)2017 Aug 03.
Article in English | MEDLINE | ID: mdl-28771176

ABSTRACT

The primary function of chemokines is to direct the migration of leukocytes to the site of injury during inflammation. The effects of chemokines are modulated by several means, including binding to G-protein coupled receptors (GPCRs), binding to glycosaminoglycans (GAGs), and through post-translational modifications (PTMs). GAGs, present on cell surfaces, bind chemokines released in response to injury. Chemokines bind leukocytes via their GPCRs, which directs migration and contributes to local inflammation. Studies have shown that GAGs or GAG-binding peptides can be used to interfere with chemokine binding and reduce leukocyte recruitment. Post-translational modifications of chemokines, such as nitration, which occurs due to the production of reactive species during oxidative stress, can also alter their biological activity. This review describes the regulation of chemokine function by GAG-binding ability and by post-translational nitration. These are both aspects of chemokine biology that could be targeted if the therapeutic potential of chemokines, like CXCL8, to modulate inflammation is to be realised.


Subject(s)
Chemokines/metabolism , Glycosaminoglycans/metabolism , Oxidative Stress , Protein Processing, Post-Translational , Receptors, Chemokine/metabolism , Animals , Humans , Inflammation/metabolism , Inflammation/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...