Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36012207

ABSTRACT

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder, of the so-called minority diseases, due to its low prevalence. It is caused by an abnormally long track of glutamines (polyQs) in mutant huntingtin (mHtt), which makes the protein toxic and prone to aggregation. Many pathways of clearance of badly-folded proteins are disrupted in neurons of patients with HD. In this work, we show that one Mn(II) quinone complex (4QMn), designed to work as an artificial superoxide dismutase, is able to activate both the ubiquitin-proteasome system and the autophagy pathway in vitro and in vivo models of HD. Activation of these pathways degrades mHtt and other protein-containing polyQs, which restores proteostasis in these models. Hence, we propose 4QMn as a potential drug to develop a therapy to treat HD.


Subject(s)
Huntington Disease , Quinolines , Animals , Disease Models, Animal , Humans , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntington Disease/drug therapy , Huntington Disease/metabolism , Manganese , Models, Theoretical , Proteasome Endopeptidase Complex/metabolism , Proteostasis , Quinolines/therapeutic use
2.
Exp Mol Med ; 51(6): 1-16, 2019 06 05.
Article in English | MEDLINE | ID: mdl-31165723

ABSTRACT

Huntington disease is a neurodegenerative condition for which there is no cure to date. Activation of AMP-activated protein kinase has previously been shown to be beneficial in in vitro and in vivo models of Huntington's disease. Moreover, a recent cross-sectional study demonstrated that treatment with metformin, a well-known activator of this enzyme, is associated with better cognitive scores in patients with this disease. We performed a preclinical study using metformin to treat phenotypes of the zQ175 mouse model of Huntington disease. We evaluated behavior (motor and neuropsychiatric function) and molecular phenotypes (aggregation of mutant huntingtin, levels of brain-derived neurotrophic factor, neuronal inflammation, etc.). We also used two models of polyglutamine toxicity in Caenorhabditis elegans to further explore potential mechanisms of metformin action. Our results provide strong evidence that metformin alleviates motor and neuropsychiatric phenotypes in zQ175 mice. Moreover, metformin intake reduces the number of nuclear aggregates of mutant huntingtin in the striatum. The expression of brain-derived neurotrophic factor, which is reduced in mutant animals, is partially restored in metformin-treated mice, and glial activation in mutant mice is reduced in metformin-treated animals. In addition, using worm models of polyglutamine toxicity, we demonstrate that metformin reduces polyglutamine aggregates and restores neuronal function through mechanisms involving AMP-activated protein kinase and lysosomal function. Our data indicate that metformin alleviates the progression of the disease and further supports AMP-activated protein kinase as a druggable target against Huntington's disease.


Subject(s)
Huntington Disease/drug therapy , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Protein Aggregation, Pathological/drug therapy , AMP-Activated Protein Kinases/metabolism , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Caenorhabditis elegans , Disease Models, Animal , Humans , Huntingtin Protein/metabolism , Huntington Disease/metabolism , Huntington Disease/pathology , Mice , Peptides/metabolism , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/pathology
3.
Cell Death Differ ; 26(9): 1545-1565, 2019 09.
Article in English | MEDLINE | ID: mdl-30770874

ABSTRACT

In the presence of aggregation-prone proteins, the cytosol and endoplasmic reticulum (ER) undergo a dramatic shift in their respective redox status, with the cytosol becoming more oxidized and the ER more reducing. However, whether and how changes in the cellular redox status may affect protein aggregation is unknown. Here, we show that C. elegans loss-of-function mutants for the glutathione reductase gsr-1 gene enhance the deleterious phenotypes of heterologous human, as well as endogenous worm aggregation-prone proteins. These effects are phenocopied by the GSH-depleting agent diethyl maleate. Additionally, gsr-1 mutants abolish the nuclear translocation of HLH-30/TFEB transcription factor, a key inducer of autophagy, and strongly impair the degradation of the autophagy substrate p62/SQST-1::GFP, revealing glutathione reductase may have a role in the clearance of protein aggregates by autophagy. Blocking autophagy in gsr-1 worms expressing aggregation-prone proteins results in strong synthetic developmental phenotypes and lethality, supporting the physiological importance of glutathione reductase in the regulation of misfolded protein clearance. Furthermore, impairing redox homeostasis in both yeast and mammalian cells induces toxicity phenotypes associated with protein aggregation. Together, our data reveal that glutathione redox homeostasis may be central to proteostasis maintenance through autophagy regulation.


Subject(s)
Autophagy/genetics , Caenorhabditis elegans/genetics , Glutathione Reductase/metabolism , Glutathione/metabolism , Peptides/toxicity , Protein Aggregation, Pathological/metabolism , Proteostasis/genetics , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Cell Line , Endoplasmic Reticulum/metabolism , Glutathione/genetics , Glutathione Reductase/genetics , Homeostasis/drug effects , Homeostasis/genetics , Humans , Maleates/pharmacology , Muscle Cells/metabolism , Neurons/metabolism , Oxidation-Reduction/drug effects , Peptides/antagonists & inhibitors , Phenotype , Proteolysis/drug effects , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
4.
PLoS One ; 12(6): e0179283, 2017.
Article in English | MEDLINE | ID: mdl-28632780

ABSTRACT

Huntington's disease (HD) is an inherited, dominant neurodegenerative disorder caused by an abnormal expansion of CAG triplets in the huntingtin gene (htt). Despite extensive efforts to modify the progression of HD thus far only symptomatic treatment is available. Recent work suggests that treating invertebrate and mice HD models with metformin, a well-known AMPK activator which is used worldwide to treat type 2-diabetes, reduces mutant huntingtin from cells and alleviates many of the phenotypes associated to HD. Herein we report statistical analyses of a sample population of participants in the Enroll-HD database, a world-wide observational study on HD, to assess the effect of metformin intake in HD patients respect to cognitive status using linear models. This cross-sectional study shows for the first time that the use of metformin associates with better cognitive function in HD patients.


Subject(s)
Cognition/physiology , Huntington Disease/drug therapy , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Adult , Aged , Case-Control Studies , Cognition/drug effects , Cross-Sectional Studies , Female , Humans , Male , Middle Aged
5.
EMBO Rep ; 16(3): 341-50, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25608529

ABSTRACT

RNA interference (RNAi) is a widespread and widely exploited phenomenon. Here, we show that changing inositol 1,4,5-trisphosphate (IP3) signalling alters RNAi sensitivity in Caenorhabditis elegans. Reducing IP3 signalling enhances sensitivity to RNAi in a broad range of genes and tissues. Conversely up-regulating IP3 signalling decreases sensitivity. Tissue-specific rescue experiments suggest IP3 functions in the intestine. We also exploit IP3 signalling mutants to further enhance the sensitivity of RNAi hypersensitive strains. These results demonstrate that conserved cell signalling pathways can modify RNAi responses, implying that RNAi responses may be influenced by an animal's physiology or environment.


Subject(s)
Caenorhabditis elegans/physiology , Inositol 1,4,5-Trisphosphate/metabolism , RNA Interference/physiology , Signal Transduction/physiology , Animals , Caenorhabditis elegans/genetics , Image Processing, Computer-Assisted , Intestinal Mucosa/metabolism , Microscopy, Fluorescence , Models, Biological , RNA, Double-Stranded , Signal Transduction/genetics
6.
PLoS One ; 8(2): e57506, 2013.
Article in English | MEDLINE | ID: mdl-23451239

ABSTRACT

Usher syndrome type I (USH1) is an autosomal recessive disorder characterized by congenital profound deafness, vestibular areflexia and prepubertal retinitis pigmentosa. The first purpose of this study was to determine the pathologic nature of eighteen USH1 putative splicing variants found in our series and their effect in the splicing process by minigene assays. These variants were selected according to bioinformatic analysis. The second aim was to analyze the USH1 transcripts, obtained from nasal epithelial cells samples of our patients, in order to corroborate the observed effect of mutations by minigenes in patient's tissues. The last objective was to evaluate the nasal ciliary beat frequency in patients with USH1 and compare it with control subjects. In silico analysis were performed using four bioinformatic programs: NNSplice, Human Splicing Finder, NetGene2 and Spliceview. Afterward, minigenes based on the pSPL3 vector were used to investigate the implication of selected changes in the mRNA processing. To observe the effect of mutations in the patient's tissues, RNA was extracted from nasal epithelial cells and RT-PCR analyses were performed. Four MYO7A (c.470G>A, c.1342_1343delAG, c.5856G>A and c.3652G>A), three CDH23 (c.2289+1G>A, c.6049G>A and c.8722+1delG) and one PCDH15 (c.3717+2dupTT) variants were observed to affect the splicing process by minigene assays and/or transcripts analysis obtained from nasal cells. Based on our results, minigenes are a good approach to determine the implication of identified variants in the mRNA processing, and the analysis of RNA obtained from nasal epithelial cells is an alternative method to discriminate neutral Usher variants from those with a pathogenic effect on the splicing process. In addition, we could observe that the nasal ciliated epithelium of USH1 patients shows a lower ciliary beat frequency than control subjects.


Subject(s)
Epithelial Cells/physiology , Nose/cytology , RNA Splicing/genetics , Usher Syndromes/genetics , Cadherin Related Proteins , Cadherins/genetics , Case-Control Studies , Cilia/physiology , Computational Biology/methods , Epithelial Cells/metabolism , Genetic Variation , Humans , Mutation , Myosin VIIa , Myosins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...