Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 482(4): 610-614, 2017 Jan 22.
Article in English | MEDLINE | ID: mdl-27865833

ABSTRACT

The long-flagella mutants (lf1, lf2, lf3 and lf4) of Chlamydomonas reinhardtii are defective in proteins that are required for the assembly of normal flagella, their phenotype being long flagella. In a previous study, we biophysically characterized these mutants for their waveform patterns, swimming speeds, beat frequencies and correlated these parameters with their flagellar lengths. We found an anomaly in this correlation and set out to explore the underlying molecular significance, if any. The diverse inner dynein isoforms are the flagellar motors that convert the chemical energy of ATP into the mechanical energy of motility; we probed the presence of one of these isoforms (DHC11, which might help in bend initiation) in the lf mutants and compared it with the wild-type. Our studies show that the ratio of DHC11 is defective in the long-flagella mutants of Chlamydomonas reinhardtii.


Subject(s)
Chlamydomonas reinhardtii/genetics , Chlamydomonas reinhardtii/physiology , Dyneins/genetics , Plant Proteins/genetics , Movement , Mutation , Protein Isoforms/genetics
2.
Plant Signal Behav ; 9(1): e27969, 2014.
Article in English | MEDLINE | ID: mdl-24514873

ABSTRACT

We report here, the transcriptional regulation of 2 Calcium Dependent Protein Kinases in response to nutrient starvation of Chlamydomonas reinhardtii vegetative cells. The CDPK proteins, CDPK1 and CDPK3; share 53% identity among themselves, a maximum of 57% and 52% to higher plants respectively and 42% to apicomplexan protozoans. We expressed a CDPK1-GFP fusion protein in the C. reinhardtii vegetative cells and showed its distribution both in the cell body and the membrane-matrix fraction of the flagella. The fusion protein exhibits mobility shift in the presence of Ca (2+), confirming its Ca (2+)-binding properties. To the best of our knowledge, this is the first report of transcriptional regulation of CDPKs from a unicellular chlorophyte in response to nutrient starvation namely acetate (A), phosphorus (P), and nitrogen (N).


Subject(s)
Chlamydomonas reinhardtii/enzymology , Gene Expression Regulation , Protein Kinases/metabolism , Chlamydomonas reinhardtii/genetics , Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...