Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(8)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37109838

ABSTRACT

The novel, single-sample concept combinatorial method, the so-called micro-combinatory technique, has been shown to be suitable for the high-throughput and complex characterization of multicomponent thin films over an entire composition range. This review focuses on recent results regarding the characteristics of different binary and ternary films prepared by direct current (DC) and radiofrequency (RF) sputtering using the micro-combinatorial technique. In addition to the 3 mm diameter TEM grid used for microstructural analysis, by scaling up the substrate size to 10 × 25 mm, this novel approach has allowed for a comprehensive study of the properties of the materials as a function of their composition, which has been determined via transmission electron microscopy (TEM), scanning electron microscopy (SEM), Rutherford backscattering spectrometry (RBS), X-ray diffraction analysis (XRD), atomic force microscopy (AFM), spectroscopic ellipsometry, and nanoindentation studies. Thanks to the micro-combinatory technique, the characterization of multicomponent layers can be studied in greater detail and efficiency than before, which is beneficial for both research and practical applications. In addition to new scientific advances, we will briefly explore the potential for innovation with respect to this new high-throughput concept, including the creation of two- and three-component thin film databases.

2.
Materials (Basel) ; 15(18)2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36143625

ABSTRACT

In a single process run, an amorphous silicon oxynitride layer was grown, which includes the entire transition from oxide to nitride. The variation of the optical properties and the thickness of the layer was characterized by Spectroscopic Ellipsometry (SE) measurements, while the elemental composition was investigated by Energy Dispersive Spectroscopy (EDS). It was revealed that the refractive index of the layer at 632.8 nm is tunable in the 1.48-1.89 range by varying the oxygen partial pressure in the chamber. From the data of the composition of the layer, the typical physical parameters of the process were determined by applying the Berg model valid for reactive sputtering. In our modelling, a new approach was introduced, where the metallic Si target sputtered with a uniform nitrogen and variable oxygen gas flow was considered as an oxygen gas-sputtered SiN target. The layer growth method used in the present work and the revealed correlations between sputtering parameters, layer composition and refractive index, enable both the achievement of the desired optical properties of silicon oxynitride layers and the production of thin films with gradient refractive index for technology applications.

3.
Sci Rep ; 10(1): 19266, 2020 Nov 06.
Article in English | MEDLINE | ID: mdl-33159099

ABSTRACT

The optical parameters of hydrogenated amorphous a-[Formula: see text]:H layers were measured with focused beam mapping ellipsometry for photon energies from 0.7 to 6.5 eV. The applied single-sample micro-combinatorial technique enables the preparation of a-[Formula: see text]:H with full range composition spread. Linearly variable composition profile was revealed along the 20 mm long gradient part of the sample by Rutherford backscattering spectrometry and elastic recoil detection analysis. The Cody-Lorentz approach was identified as the best method to describe the optical dispersion of the alloy. The effect of incorporated H on the optical absorption is explained by the lowering of the density of localized states in the mobility gap. It is shown that in the low-dispersion near infrared range the refractive index of the a-[Formula: see text] alloy can be comprehended as a linear combination of the optical parameters of the components. The micro-combinatorial sample preparation with mapping ellipsometry is not only suitable for the fabrication of samples with controlled lateral distribution of the concentrations, but also opens new prospects in creating databases of compounds for optical and optoelectonic applications.

4.
Nanoscale Res Lett ; 8(1): 84, 2013 Feb 15.
Article in English | MEDLINE | ID: mdl-23413996

ABSTRACT

Differently hydrogenated radio frequency-sputtered a-Si layers have been studied by infrared (IR) spectroscopy as a function of the annealing time at 350°C with the aim to get a deeper understanding of the origin of blisters previously observed by us in a-Si/a-Ge multilayers prepared under the same conditions as the ones applied to the present a-Si layers. The H content varied between 10.8 and 17.6 at.% as measured by elastic recoil detection analysis. IR spectroscopy showed that the concentration of the clustered (Si-H)n groups and of the (Si-H2)n (n ≥ 1) polymers increased at the expense of the Si-H mono-hydrides with increasing annealing time, suggesting that there is a corresponding increase of the volume of micro-voids whose walls are assumed from literature to be decorated by the clustered mono-hydride groups and polymers. At the same time, an increase in the size of surface blisters was observed. Also, with increasing annealing time, the total concentration of bonded H of any type decreases, indicating that H is partially released from its bonds to Si. It is argued that the H released from the (Si-H)n complexes and polymers at the microvoid surfaces form molecular H2 inside the voids, whose size increases upon annealing because of the thermal expansion of the H2 gas, eventually producing plastic surface deformation in the shape of blisters.

5.
Nanoscale Res Lett ; 6(1): 189, 2011 Mar 01.
Article in English | MEDLINE | ID: mdl-21711697

ABSTRACT

Hydrogenated multilayers (MLs) of a-Si/a-Ge have been analysed to establish the reasons of H release during annealing that has been seen to bring about structural modifications even up to well-detectable surface degradation. Analyses carried out on single layers of a-Si and a-Ge show that H is released from its bond to the host lattice atom and that it escapes from the layer much more efficiently in a-Ge than in a-Si because of the smaller binding energy of the H-Ge bond and probably of a greater weakness of the Ge lattice. This should support the previous hypothesis that the structural degradation of a-Si/a-Ge MLs primary starts with the formation of H bubbles in the Ge layers.

SELECTION OF CITATIONS
SEARCH DETAIL
...