Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Extracell Vesicle ; 32024 Jun.
Article in English | MEDLINE | ID: mdl-38957857

ABSTRACT

Mesenchymal stem cells (MSCs) have been studied for decades as candidates for cellular therapy, and their secretome, including secreted extracellular vesicles (EVs), has been identified to contribute significantly to regenerative and reparative functions. Emerging evidence has suggested that MSC-EVs alone, could be used as therapeutics that emulate the biological function of MSCs. However, just as with MSCs, MSC-EVs have been shown to vary in composition, depending on the tissue source of the MSCs as well as the protocols employed in culturing the MSCs and obtaining the EVs. Therefore, the importance of careful choice of cell sources and culture environments is receiving increasing attention. Many factors contribute to the therapeutic potential of MSC-EVs, including the source tissue, isolation technique, and culturing conditions. This review illustrates the molecular landscape of EVs derived from different types of MSC cells along with culture strategies. A thorough analysis of publicly available omic datasets was performed to advance the precision understanding of MSC-EVs with unique tissue source-dependent molecular characteristics. The tissue-specific protein and miRNA-driven Reactome ontology analysis was used to reveal distinct patterns of top Reactome ontology pathways across adipose, bone marrow, and umbilical MSC-EVs. Moreover, a meta-analysis assisted by an AI technique was used to analyze the published literature, providing insights into the therapeutic translation of MSC-EVs based on their source tissues.

2.
Pharm Res ; 40(4): 833-853, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36319886

ABSTRACT

Extracellular vesicles (EVs) have various advantageous properties, including a small size, high biocompatibility, efficient cargo loading, and precise cell targeting ability, making them promising tools for therapeutic development. EVs have been increasingly explored for applications like drug delivery. However, due to limited cellular secretion rates of EVs, wide-scale clinical applications are not achievable. Therefore, substantial strategies and research efforts have been devoted to increasing cellular secretion rates of EVs. This review describes various studies exploring different methods to increase the cellular production of EVs, including the application of electrical stimulus, pharmacologic agents, electromagnetic waves, sound waves, shear stress, cell starvation, alcohol, pH, heat, and genetic manipulation. These methods have shown success in increasing EV production, but careful consideration must be given as many of these strategies may alter EV properties and functionalities, and the exact mechanisms causing the increase in cellular production of EVs is generally unknown. Additionally, the methods' effectiveness in increasing EV secretion may diverge with different cell lines and conditions. Further advancements to enhance EV biogenesis secretion for therapeutic development is still a significant need in the field.


Subject(s)
Extracellular Vesicles , Extracellular Vesicles/chemistry , Drug Delivery Systems/methods , Cell Line , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...