Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
bioRxiv ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38559242

ABSTRACT

Immunomodulatory imide drugs (IMiDs) including thalidomide, lenalidomide, and pomalidomide, can be used to induce degradation of a protein of interest that is fused to a short zinc finger (ZF) degron motif. These IMiDs, however, also induce degradation of endogenous neosubstrates, including IKZF1 and IKZF3. To improve degradation selectivity, we took a bump-and-hole approach to design and screen bumped IMiD analogs against 8380 ZF mutants. This yielded a bumped IMiD analog that induces efficient degradation of a mutant ZF degron, while not affecting other cellular proteins, including IKZF1 and IKZF3. In proof-of-concept studies, this system was applied to induce efficient degradation of TRIM28, a disease-relevant protein with no known small molecule binders. We anticipate that this system will make a valuable addition to the current arsenal of degron systems for use in target validation.

2.
JCI Insight ; 9(5)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456506

ABSTRACT

Dysostosis multiplex is a major cause of morbidity in Hurler syndrome (mucopolysaccharidosis type IH [MPS IH], OMIM #607014) because currently available therapies have limited success in its prevention and reversion. Unfortunately, the elucidation of skeletal pathogenesis in MPS IH is limited by difficulties in obtaining bone specimens from pediatric patients and poor reproducibility in animal models. Thus, the application of experimental systems that can be used to dissect cellular and molecular mechanisms underlying the skeletal phenotype of MPS IH patients and to identify effective therapies is highly needed. Here, we adopted in vitro/in vivo systems based on patient-derived bone marrow stromal cells to generate cartilaginous pellets and bone rudiments. Interestingly, we observed that heparan sulphate accumulation compromised the remodeling of MPS IH cartilage into other skeletal tissues and other critical aspects of the endochondral ossification process. We also noticed that MPS IH hypertrophic cartilage was characterized by dysregulation of signaling pathways controlling cartilage hypertrophy and fate, extracellular matrix organization, and glycosaminoglycan metabolism. Our study demonstrates that the cartilaginous pellet-based system is a valuable tool to study MPS IH dysostosis and to develop new therapeutic approaches for this hard-to-treat aspect of the disease. Finally, our approach may be applied for modeling other genetic skeletal disorders.


Subject(s)
Dysostoses , Mucopolysaccharidosis I , Animals , Humans , Child , Mucopolysaccharidosis I/genetics , Mucopolysaccharidosis I/pathology , Mucopolysaccharidosis I/therapy , Iduronidase/genetics , Iduronidase/metabolism , Bone Marrow/pathology , Reproducibility of Results
3.
Sci Transl Med ; 16(733): eadh8162, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324638

ABSTRACT

Recombination activating genes (RAGs) are tightly regulated during lymphoid differentiation, and their mutations cause a spectrum of severe immunological disorders. Hematopoietic stem and progenitor cell (HSPC) transplantation is the treatment of choice but is limited by donor availability and toxicity. To overcome these issues, we developed gene editing strategies targeting a corrective sequence into the human RAG1 gene by homology-directed repair (HDR) and validated them by tailored two-dimensional, three-dimensional, and in vivo xenotransplant platforms to assess rescue of expression and function. Whereas integration into intron 1 of RAG1 achieved suboptimal correction, in-frame insertion into exon 2 drove physiologic human RAG1 expression and activity, allowing disruption of the dominant-negative effects of unrepaired hypomorphic alleles. Enhanced HDR-mediated gene editing enabled the correction of human RAG1 in HSPCs from patients with hypomorphic RAG1 mutations to overcome T and B cell differentiation blocks. Gene correction efficiency exceeded the minimal proportion of functional HSPCs required to rescue immunodeficiency in Rag1-/- mice, supporting the clinical translation of HSPC gene editing for the treatment of RAG1 deficiency.


Subject(s)
Gene Editing , Hematopoietic Stem Cell Transplantation , Animals , Humans , Mice , Exons , Gene Editing/methods , Hematopoietic Stem Cells/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism
5.
Blood ; 143(14): 1399-1413, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38194688

ABSTRACT

ABSTRACT: SETBP1 mutations are found in various clonal myeloid disorders. However, it is unclear whether they can initiate leukemia, because SETBP1 mutations typically appear as later events during oncogenesis. To answer this question, we generated a mouse model expressing mutated SETBP1 in hematopoietic tissue: this model showed profound alterations in the differentiation program of hematopoietic progenitors and developed a myeloid neoplasm with megakaryocytic dysplasia, splenomegaly, and bone marrow fibrosis, prompting us to investigate SETBP1 mutations in a cohort of 36 triple-negative primary myelofibrosis (TN-PMF) cases. We identified 2 distinct subgroups, one carrying SETBP1 mutations and the other completely devoid of somatic variants. Clinically, a striking difference in disease aggressiveness was noted, with patients with SETBP1 mutation showing a much worse clinical course. In contrast to myelodysplastic/myeloproliferative neoplasms, in which SETBP1 mutations are mostly found as a late clonal event, single-cell clonal hierarchy reconstruction in 3 patients with TN-PMF from our cohort revealed SETBP1 to be a very early event, suggesting that the phenotype of the different SETBP1+ disorders may be shaped by the opposite hierarchy of the same clonal SETBP1 variants.


Subject(s)
Hematopoietic System , Myelodysplastic-Myeloproliferative Diseases , Myeloproliferative Disorders , Primary Myelofibrosis , Animals , Mice , Humans , Primary Myelofibrosis/genetics , Myeloproliferative Disorders/genetics , Mutation , Carrier Proteins/genetics , Nuclear Proteins/genetics
6.
ACS Med Chem Lett ; 14(12): 1891-1892, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38116440

ABSTRACT

[This corrects the article DOI: 10.1021/acsmedchemlett.2c00166.].

7.
Front Immunol ; 14: 1320497, 2023.
Article in English | MEDLINE | ID: mdl-38111584

ABSTRACT

Introduction: Acute myeloid leukemia (AML) is a highly heterogeneous malignancy caused by various genetic alterations and characterized by the accumulation of immature myeloid blasts in the bone marrow (BM). This abnormal growth of AML cells disrupts normal hematopoiesis and alters the BM microenvironment components, establishing a niche supportive of leukemogenesis. Bone marrow stromal cells (BMSCs) play a pivotal role in giving rise to essential elements of the BM niche, including adipocytes and osteogenic cells. Animal models have shown that the BM microenvironment is significantly remodeled by AML cells, which skew BMSCs toward an ineffective osteogenic differentiation with an accumulation of osteoprogenitors. However, little is known about the mechanisms by which AML cells affect osteogenesis. Methods: We studied the effect of AML cells on the osteogenic commitment of normal BMSCs, using a 2D co-culture system. Results: We found that AML cell lines and primary blasts, but not normal hematopoietic CD34+ cells, induced in BMSCs an ineffective osteogenic commitment, with an increase of the early-osteogenic marker tissue non-specific alkaline phosphatase (TNAP) in the absence of the late-osteogenic gene up-regulation. Moreover, the direct interaction of AML cells and BMSCs was indispensable in influencing osteogenic differentiation. Mechanistic studies identified a role for AML-mediated Notch activation in BMSCs contributing to their ineffective osteogenic commitment. Inhibition of Notch using a γ-secretase inhibitor strongly influenced Notch signaling in BMSCs and abrogated the AML-induced TNAP up-regulation. Discussion: Together, our data support the hypothesis that AML infiltration produces a leukemia-supportive pre-osteoblast-rich niche in the BM, which can be partially ascribed to AML-induced activation of Notch signaling in BMSCs.


Subject(s)
Leukemia, Myeloid, Acute , Mesenchymal Stem Cells , Animals , Osteogenesis , Bone Marrow Cells/metabolism , Leukemia, Myeloid, Acute/pathology , Bone Marrow/metabolism , Mesenchymal Stem Cells/metabolism , Tumor Microenvironment
8.
ACS Chem Biol ; 18(11): 2405-2417, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37874862

ABSTRACT

Target validation remains a challenge in drug discovery, which leads to a high attrition rate in the drug discovery process, particularly in Phase II clinical trials. Consequently, new approaches to enhance target validation are valuable tools to improve the drug discovery process. Here, we report the combination of site-directed mutagenesis and electrophilic fragments to enable the rapid identification of small molecules that selectively inhibit the mutant protein. Using the bromodomain-containing protein BRD4 as an example, we employed a structure-based approach to identify the L94C mutation in the first bromodomain of BRD4 [BRD4(1)] as having a minimal effect on BRD4(1) function. We then screened a focused, KAc mimic-containing fragment set and a diverse fragment library against the mutant and wild-type proteins and identified a series of fragments that showed high selectivity for the mutant protein. These compounds were elaborated to include an alkyne click tag to enable the attachment of a fluorescent dye. These clickable compounds were then assessed in HEK293T cells, transiently expressing BRD4(1)WT or BRD4(1)L94C, to determine their selectivity for BRD4(1)L94C over other possible cellular targets. One compound was identified that shows very high selectivity for BRD4(1)L94C over all other proteins. This work provides a proof-of-concept that the combination of site-directed mutagenesis and electrophilic fragments, in a mutate and conjugate approach, can enable rapid identification of small molecule inhibitors for an appropriately mutated protein of interest. This technology can be used to assess the cellular phenotype of inhibiting the protein of interest, and the electrophilic ligand provides a starting point for noncovalent ligand development.


Subject(s)
Nuclear Proteins , Transcription Factors , Humans , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Ligands , HEK293 Cells , Transcription Factors/metabolism , Mutant Proteins , Cell Cycle Proteins/genetics
9.
Front Immunol ; 14: 1192333, 2023.
Article in English | MEDLINE | ID: mdl-37304257

ABSTRACT

In acute myeloid leukemia (AML), malignant stem cells hijack the normal bone marrow niche where they are largely protected from the current therapeutic approaches. Thus, eradicating these progenitors is the ultimate challenge in the treatment of this disease. Specifically, the development of chimeric antigen receptors (CARs) against distinct mesenchymal stromal cell subpopulations involved in the maintenance of leukemic stem cells within the malignant bone marrow microenvironment could represent a new strategy to improve CAR T-cell therapy efficacy, which is still unsuccessful in AML. As a proof of concept, we generated a novel prototype of Tandem CAR, with one specificity directed against the leukemic cell marker CD33 and the other against the mesenchymal stromal cell marker CD146, demonstrating its capability of simultaneously targeting two different cell types in a 2D co-culture system. Interestingly, we could also observe an in vitro inhibition of CAR T cell functionality mediated by stromal cells, particularly in later effector functions, such as reduction of interferon-gamma and interleukin-2 release and impaired proliferation of the CAR+ effector Cytokine-Induced Killer (CIK) cells. Taken together, these data demonstrate the feasibility of a dual targeting model against two molecules, which are expressed on two different target cells, but also highlight the immunomodulatory effect on CAR CIK cells exerted by stromal cells, confirming that the niche could be an obstacle to the efficacy of CAR T cells. This aspect should be considered in the development of novel CAR T cell approaches directed against the AML bone marrow niche.


Subject(s)
Cytokine-Induced Killer Cells , Leukemia, Myeloid, Acute , Receptors, Chimeric Antigen , Humans , Receptors, Chimeric Antigen/genetics , Leukemia, Myeloid, Acute/therapy , Immunotherapy, Adoptive , Interferon-gamma , Tumor Microenvironment
10.
Hemasphere ; 7(6): e896, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37234820

ABSTRACT

Until a few years ago, the onset of acute myeloid leukemia (AML) was entirely ascribed to genetic lesions in hematopoietic stem cells. These mutations generate leukemic stem cells, which are known to be the main ones responsible for chemoresistance and relapse. However, in the last years, increasing evidence demonstrated that dynamic interplay between leukemic cells and bone marrow (BM) niche is of paramount relevance in the pathogenesis of myeloid malignancies, including AML. Specifically, BM stromal niche components, such as mesenchymal stromal cells (MSCs) and their osteoblastic cell derivatives, play a key role not only in supporting normal hematopoiesis but also in the manifestation and progression of myeloid malignancies. Here, we reviewed recent clinical and experimental findings about how genetic and functional alterations in MSCs and osteolineage progeny can contribute to leukemogenesis and how leukemic cells in turn generate a corrupted niche able to support myeloid neoplasms. Moreover, we discussed how the newest single-cell technologies may help dissect the interactions between BM stromal cells and malignant hematopoiesis. The deep comprehension of the tangled relationship between stroma and AML blasts and their modulation during disease progression may have a valuable impact on the development of new microenvironment-directed therapeutic strategies, potentially useful for a wide cohort of patients.

11.
Front Cell Infect Microbiol ; 13: 1161669, 2023.
Article in English | MEDLINE | ID: mdl-37153157

ABSTRACT

Introduction: Recent evidence suggests that the bone marrow (BM) plays a key role in the diffusion of P. falciparum malaria by providing a "niche" for the maturation of the parasite gametocytes, responsible for human-to-mosquito transmission. Suitable humanized in vivo models to study the mechanisms of the interplay between the parasite and the human BM components are still missing. Methods: We report a novel experimental system based on the infusion of immature P. falciparum gametocytes into immunocompromised mice carrying chimeric ectopic ossicles whose stromal and bone compartments derive from human osteoprogenitor cells. Results: We demonstrate that immature gametocytes home within minutes to the ossicles and reach the extravascular regions, where they are retained in contact with different human BM stromal cell types. Discussion: Our model represents a powerful tool to study BM function and the interplay essential for parasite transmission in P. falciparum malaria and can be extended to study other infections in which the human BM plays a role.


Subject(s)
Malaria, Falciparum , Malaria , Parasites , Humans , Animals , Mice , Plasmodium falciparum , Bone Marrow/parasitology , Malaria, Falciparum/parasitology
12.
Blood ; 141(21): 2587-2598, 2023 05 25.
Article in English | MEDLINE | ID: mdl-36787509

ABSTRACT

Acute myeloid leukemia (AML) is a hematological malignancy derived from neoplastic myeloid progenitor cells characterized by abnormal clonal proliferation and differentiation. Although novel therapeutic strategies have recently been introduced, the prognosis of AML is still unsatisfactory. So far, the efficacy of chimeric antigen receptor (CAR)-T-cell therapy in AML has been hampered by several factors, including the poor accumulation of the blood-injected cells in the leukemia bone marrow (BM) niche in which chemotherapy-resistant leukemic stem cells reside. Thus, we hypothesized that overexpression of CXCR4, whose ligand CXCL12 is highly expressed by BM stromal cells within this niche, could improve T-cell homing to the BM and consequently enhance their intimate contact with BM-resident AML cells, facilitating disease eradication. Specifically, we engineered conventional CD33.CAR-cytokine-induced killer cells (CIKs) with the wild-type (wt) CXCR4 and the variant CXCR4R334X, responsible for leukocyte sequestration in the BM of patients with warts, hypogammaglobulinemia, immunodeficiency, and myelokathexis syndrome. Overexpression of both CXCR4wt and CXCR4mut in CD33.CAR-CIKs resulted in significant improvement of chemotaxis toward recombinant CXCL12 or BM stromal cell-conditioned medium, with no observed impairment of cytotoxic potential in vitro. Moreover, CXCR4-overexpressing CD33.CAR-CIKs showed enhanced in vivo BM homing, associated with a prolonged retention for the CXCR4R334X variant. However, only CD33.CAR-CIKs coexpressing CXCR4wt but not CXCR4mut exerted a more sustained in vivo antileukemic activity and extended animal survival, suggesting a noncanonical role for CXCR4 in modulating CAR-CIK functions independent of BM homing. Taken together, these data suggest that arming CAR-CIKs with CXCR4 may represent a promising strategy for increasing their therapeutic potential for AML.


Subject(s)
Antineoplastic Agents , Cytokine-Induced Killer Cells , Leukemia, Myeloid, Acute , Animals , Bone Marrow/pathology , Cytokine-Induced Killer Cells/pathology , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/drug therapy , Antineoplastic Agents/therapeutic use , T-Lymphocytes , Bone Marrow Cells/pathology
13.
Blood Adv ; 7(12): 2855-2871, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-36521101

ABSTRACT

Acute myeloid leukemia (AML) still represents an unmet clinical need for adult and pediatric patients. Adoptive cell therapy by chimeric antigen receptor (CAR)-engineered T cells demonstrated a high therapeutic potential, but further development is required to ensure a safe and durable disease remission in AML, especially in elderly patients. To date, translation of CAR T-cell therapy in AML is limited by the absence of an ideal tumor-specific antigen. CD123 and CD33 are the 2 most widely overexpressed leukemic stem cell biomarkers but their shared expression with endothelial and hematopoietic stem and progenitor cells increases the risk of undesired vascular and hematologic toxicities. To counteract this issue, we established a balanced dual-CAR strategy aimed at reducing off-target toxicities while retaining full functionality against AML. Cytokine-induced killer (CIK) cells, coexpressing a first-generation low affinity anti-CD123 interleukin-3-zetakine (IL-3z) and an anti-CD33 as costimulatory receptor without activation signaling domains (CD33.CCR), demonstrated a powerful antitumor efficacy against AML targets without any relevant toxicity on hematopoietic stem and progenitor cells and endothelial cells. The proposed optimized dual-CAR cytokine-induced killer cell strategy could offer the opportunity to unleash the potential of specifically targeting CD123+/CD33+ leukemic cells while minimizing toxicity against healthy cells.


Subject(s)
Interleukin-3 , Leukemia, Myeloid, Acute , Humans , Child , Aged , Interleukin-3/metabolism , Endothelial Cells/metabolism , T-Lymphocytes , Cell Line, Tumor , Leukemia, Myeloid, Acute/pathology
14.
Prenat Diagn ; 43(1): 14-27, 2023 01.
Article in English | MEDLINE | ID: mdl-36443901

ABSTRACT

OBJECTIVE: To develop a multi-step workflow for the isolation of circulating extravillous trophoblasts (cEVTs) by describing the key steps enabling a semi-automated process, including a proprietary algorithm for fetal cell origin genetic confirmation and copy number variant (CNV) detection. METHODS: Determination of the limit of detection (LoD) for submicroscopic CNV was performed by serial experiments with genomic DNA and single cells from Coriell cell line biobank with known imbalances of different sizes. A pregnancy population of 372 women was prospectively enrolled and blindly analyzed to evaluate the current workflow. RESULTS: An LoD of 800 Kb was demonstrated with Coriell cell lines. This level of resolution was confirmed in the clinical cohort with the identification of a pathogenic CNV of 800 Kb, also detected by chromosomal microarray. The mean number of recovered cEVTs was 3.5 cells per sample with a significant reverse linear trend between gestational age and cEVT recovery rate and number of recovered cEVTs. In twin pregnanices, evaluation of zygosity, fetal sex and copy number profiling was performed in each individual cell. CONCLUSION: Our semi-automated methodology for the isolation and single-cell analysis of cEVTS supports the feasibility of a cell-based noninvasive prenatal test for fetal genomic profiling.


Subject(s)
DNA Copy Number Variations , Trophoblasts , Pregnancy , Humans , Female , Trophoblasts/metabolism , Prenatal Diagnosis/methods , Prenatal Care , Microarray Analysis
15.
J Hematol Oncol ; 15(1): 163, 2022 11 05.
Article in English | MEDLINE | ID: mdl-36335396

ABSTRACT

BACKGROUND: Paediatric acute myeloid leukaemia (AML) is characterized by poor outcomes in patients with relapsed/refractory disease, despite the improvements in intensive standard therapy. The leukaemic cells of paediatric AML patients show high expression of the CD123 antigen, and this finding provides the biological basis to target CD123 with the chimeric antigen receptor (CAR). However, CAR.CD123 therapy in AML is hampered by on-target off-tumour toxicity and a long "vein-to-vein" time. METHODS: We developed an off-the-shelf product based on allogeneic natural killer (NK) cells derived from the peripheral blood of healthy donors and engineered them to express a second-generation CAR targeting CD123 (CAR.CD123). RESULTS: CAR.CD123-NK cells showed significant anti-leukaemia activity not only in vitro against CD123+ AML cell lines and CD123+ primary blasts but also in two animal models of human AML-bearing immune-deficient mice. Data on anti-leukaemia activity were also corroborated by the quantification of inflammatory cytokines, namely granzyme B (Granz B), interferon gamma (IFN-γ) and tumour necrosis factor alpha (TNF-α), both in vitro and in the plasma of mice treated with CAR.CD123-NK cells. To evaluate and compare the on-target off-tumour effects of CAR.CD123-T and NK cells, we engrafted human haematopoietic cells (hHCs) in an immune-deficient mouse model. All mice infused with CAR.CD123-T cells died by Day 5, developing toxicity against primary human bone marrow (BM) cells with a decreased number of total hCD45+ cells and, in particular, of hCD34+CD38- stem cells. In contrast, treatment with CAR.CD123-NK cells was not associated with toxicity, and all mice were alive at the end of the experiments. Finally, in a mouse model engrafted with human endothelial tissues, we demonstrated that CAR.CD123-NK cells were characterized by negligible endothelial toxicity when compared to CAR.CD123-T cells. CONCLUSIONS: Our data indicate the feasibility of an innovative off-the-shelf therapeutic strategy based on CAR.CD123-NK cells, characterized by remarkable efficacy and an improved safety profile compared to CAR.CD123-T cells. These findings open a novel intriguing scenario not only for the treatment of refractory/resistant AML patients but also to further investigate the use of CAR-NK cells in other cancers characterized by highly difficult targeting with the most conventional T effector cells.


Subject(s)
Leukemia, Myeloid, Acute , Receptors, Chimeric Antigen , Child , Humans , Mice , Animals , Interleukin-3 Receptor alpha Subunit , Receptors, Chimeric Antigen/therapeutic use , Receptors, Chimeric Antigen/metabolism , Leukemia, Myeloid, Acute/pathology , Immunotherapy, Adoptive/adverse effects , Killer Cells, Natural , Cell Line, Tumor
16.
J Med Chem ; 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36323630

ABSTRACT

The use of small molecules to induce targeted protein degradation is increasingly growing in the drug discovery landscape, and protein degraders have progressed rapidly through the pipelines. Despite the advances made so far, their synthesis still represents a significant burden and new approaches are highly demanded. Herein we report an unprecedented platform that leverages the modular nature of both multicomponent reactions and degraders to enable the preparation of highly decorated PROTACs. As a proof of principle, our platform has been applied to the preparation of potential BRD4-degrading PROTACs, resulting in the discovery of a set of degraders endowed with high degradation efficiency. Compared to the existing methods, our approach offers a versatile and cost-effective means to access libraries of protein degraders and increase the chance of identifying successful candidates.

17.
Int J Mol Sci ; 23(19)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36232472

ABSTRACT

Mucopolysaccharidosis type I (MPSI) (OMIM #252800) is an autosomal recessive disorder caused by pathogenic variants in the IDUA gene encoding for the lysosomal alpha-L-iduronidase enzyme. The deficiency of this enzyme causes systemic accumulation of glycosaminoglycans (GAGs). Although disease manifestations are typically not apparent at birth, they can present early in life, are progressive, and include a wide spectrum of phenotypic findings. Among these, the storage of GAGs within the lysosomes disrupts cell function and metabolism in the cartilage, thus impairing normal bone development and ossification. Skeletal manifestations of MPSI are often refractory to treatment and severely affect patients' quality of life. This review discusses the pathological and molecular processes leading to impaired endochondral ossification in MPSI patients and the limitations of current therapeutic approaches. Understanding the underlying mechanisms responsible for the skeletal phenotype in MPSI patients is crucial, as it could lead to the development of new therapeutic strategies targeting the skeletal abnormalities of MPSI in the early stages of the disease.


Subject(s)
Iduronidase , Mucopolysaccharidosis I , Glycosaminoglycans/metabolism , Humans , Iduronidase/genetics , Mucopolysaccharidosis I/genetics , Phenotype , Quality of Life
18.
ACS Med Chem Lett ; 13(8): 1278-1285, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35978700

ABSTRACT

Precision deuteration has become part of the medicinal chemist's toolbox, but its usefulness can be undermined by unpredictable metabolic switch effects. Herein we report the deuteration of doxophylline, a drug used in the treatment of asthma and COPD that undergoes extensive oxidative metabolism. Labeling of the main metabolic soft spots triggered an unexpected multidirectional metabolic switch that, while not improving the pharmacokinetic parameters, changed the metabolic scenario and, in turn, the pharmacodynamic features in two murine models of lung injury.

19.
Bone Res ; 10(1): 50, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35853852

ABSTRACT

The Gsα/cAMP signaling pathway mediates the effect of a variety of hormones and factors that regulate the homeostasis of the post-natal skeleton. Hence, the dysregulated activity of Gsα due to gain-of-function mutations (R201C/R201H) results in severe architectural and functional derangements of the entire bone/bone marrow organ. While the consequences of gain-of-function mutations of Gsα have been extensively investigated in osteoblasts and in bone marrow osteoprogenitor cells at various differentiation stages, their effect in adipogenically-committed bone marrow stromal cells has remained unaddressed. We generated a mouse model with expression of GsαR201C driven by the Adiponectin (Adq) promoter. Adq-GsαR201C mice developed a complex combination of metaphyseal, diaphyseal and cortical bone changes. In the metaphysis, GsαR201C caused an early phase of bone resorption followed by bone deposition. Metaphyseal bone formation was sustained by cells that were traced by Adq-Cre and eventually resulted in a high trabecular bone mass phenotype. In the diaphysis, GsαR201C, in combination with estrogen, triggered the osteogenic activity of Adq-Cre-targeted perivascular bone marrow stromal cells leading to intramedullary bone formation. Finally, consistent with the previously unnoticed presence of Adq-Cre-marked pericytes in intraosseous blood vessels, GsαR201C caused the development of a lytic phenotype that affected both cortical (increased porosity) and trabecular (tunneling resorption) bone. These results provide the first evidence that the Adq-cell network in the skeleton not only regulates bone resorption but also contributes to bone formation, and that the Gsα/cAMP pathway is a major modulator of both functions.

20.
Blood Adv ; 6(15): 4471-4484, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35696753

ABSTRACT

Store-operated Ca2+-entry is a cellular mechanism that governs the replenishment of intracellular stores of Ca2+ upon depletion caused by the opening of intracellular Ca2+-channels. Gain-of-function mutations of the 2 key proteins of store-operated Ca2+-entry, STIM1 and ORAI1, are associated with several ultra-rare diseases clustered as tubular aggregate myopathies. Our group has previously demonstrated that a mouse model bearing the STIM1 p.I115F mutation recapitulates the main features of the STIM1 gain-of-function disorders: muscle weakness and thrombocytopenia. Similar findings have been found in other mice bearing different mutations on STIM1. At present, no valid treatment is available for these patients. In the present contribution, we report that CIC-39Na, a store-operated Ca2+-entry inhibitor, restores platelet number and counteracts the abnormal bleeding that characterizes these mice. Subtle differences in thrombopoiesis were observed in STIM1 p.I115F mice, but the main difference between wild-type and STIM1 p.I115F mice was in platelet clearance and in the levels of platelet cytosolic basal Ca2+. Both were restored on treatment of animals with CIC-39Na. This finding paves the way to a pharmacological treatment strategy for thrombocytopenia in tubular aggregate myopathy patients.


Subject(s)
Myopathies, Structural, Congenital , Thrombocytopenia , Animals , Calcium/metabolism , Mice , Mutation , Myopathies, Structural, Congenital/genetics , Myopathies, Structural, Congenital/metabolism , ORAI1 Protein/genetics , ORAI1 Protein/metabolism , Thrombocytopenia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...