Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
JCI Insight ; 3(18)2018 09 20.
Article in English | MEDLINE | ID: mdl-30232282

ABSTRACT

Zebrafish are a powerful tool for studying muscle function owing to their high numbers of offspring, low maintenance costs, evolutionarily conserved muscle functions, and the ability to rapidly take up small molecular compounds during early larval stages. Fukutin-related protein (FKRP) is a putative protein glycosyltransferase that functions in the Golgi apparatus to modify sugar chain molecules of newly translated proteins. Patients with mutations in the FKRP gene can have a wide spectrum of clinical symptoms with varying muscle, eye, and brain pathologies depending on the location of the mutation in the FKRP protein. Patients with a common L276I FKRP mutation have mild adult-onset muscle degeneration known as limb-girdle muscular dystrophy 2I (LGMD2I), whereas patients with more C-terminal pathogenic mutations develop the severe Walker-Warburg syndrome (WWS)/muscle-eye-brain (MEB) disease. We generated fkrp-mutant zebrafish that phenocopy WWS/MEB pathologies including severe muscle breakdowns, head malformations, and early lethality. We have also generated a milder LGMD2I-model zebrafish via overexpression of a heat shock-inducible human FKRP (L276I) transgene that shows milder muscle pathology. Screening of an FDA-approved drug compound library in the LGMD2I zebrafish revealed a strong propensity towards steroids, antibacterials, and calcium regulators in ameliorating FKRP-dependent pathologies. Together, these studies demonstrate the utility of the zebrafish to both study human-specific FKRP mutations and perform compound library screenings for corrective drug compounds to treat muscular dystrophies.


Subject(s)
Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Muscular Dystrophies, Limb-Girdle/drug therapy , Muscular Dystrophies, Limb-Girdle/physiopathology , Muscular Dystrophies/drug therapy , Muscular Dystrophies/physiopathology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Animals , Animals, Genetically Modified , Disease Models, Animal , Drug Evaluation, Preclinical , Gene Knockout Techniques , Humans , Locomotion , Movement , Muscle, Skeletal/physiopathology , Muscular Dystrophies/genetics , Muscular Dystrophies, Limb-Girdle/genetics , Mutation , Pentosyltransferases , Phenotype , Proteins , Transcriptome , Walker-Warburg Syndrome , Zebrafish
3.
Hum Mol Genet ; 23(15): 4103-10, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24647604

ABSTRACT

Limb-girdle muscular dystrophies (LGMD) are a heterogeneous group of genetically determined muscle disorders with a primary or predominant involvement of the pelvic or shoulder girdle musculature. More than 20 genes with autosomal recessive (LGMD2A to LGMD2Q) and autosomal dominant inheritance (LGMD1A to LGMD1H) have been mapped/identified to date. Mutations are known for six among the eight mapped autosomal dominant forms: LGMD1A (myotilin), LGMD1B (lamin A/C), LGMD1C (caveolin-3), LGMD1D (desmin), LGMD1E (DNAJB6), and more recently for LGMD1F (transportin-3). Our group previously mapped the LGMD1G gene at 4q21 in a Caucasian-Brazilian family. We now mapped a Uruguayan family with patients displaying a similar LGMD1G phenotype at the same locus. Whole genome sequencing identified, in both families, mutations in the HNRPDL gene. HNRPDL is a heterogeneous ribonucleoprotein family member, which participates in mRNA biogenesis and metabolism. Functional studies performed in S. cerevisiae showed that the loss of HRP1 (yeast orthologue) had pronounced effects on both protein levels and cell localizations, and yeast proteome revealed dramatic reorganization of proteins involved in RNA-processing pathways. In vivo analysis showed that hnrpdl is important for muscle development in zebrafish, causing a myopathic phenotype when knocked down. The present study presents a novel association between a muscular disorder and a RNA-related gene and reinforces the importance of RNA binding/processing proteins in muscle development and muscle disease. Understanding the role of these proteins in muscle might open new therapeutic approaches for muscular dystrophies.


Subject(s)
Muscle, Skeletal/metabolism , Muscular Dystrophies, Limb-Girdle/genetics , Mutation , Ribonucleoproteins/genetics , Adult , Animals , Chromosome Mapping , Female , Gene Expression , Genetic Loci , Humans , Male , Muscle, Skeletal/pathology , Muscular Dystrophies, Limb-Girdle/metabolism , Muscular Dystrophies, Limb-Girdle/pathology , Pedigree , Phenotype , RNA Processing, Post-Transcriptional , Ribonucleoproteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Zebrafish/genetics , mRNA Cleavage and Polyadenylation Factors/genetics , mRNA Cleavage and Polyadenylation Factors/metabolism
4.
Hum Mol Genet ; 23(7): 1869-78, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24234649

ABSTRACT

Duchenne muscular dystrophy (DMD) is caused by a lack of the dystrophin protein and has no effective treatment at present. Zebrafish provide a powerful in vivo tool for high-throughput therapeutic drug screening for the improvement of muscle phenotypes caused by dystrophin deficiency. Using the dystrophin-deficient zebrafish, sapje, we have screened a total of 2640 compounds with known modes of action from three drug libraries to identify modulators of the disease progression. Six compounds that target heme oxygenase signaling were found to rescue the abnormal muscle phenotype in sapje and sapje-like, while upregulating the inducible heme oxygenase 1 (Hmox1) at the protein level. Direct Hmox1 overexpression by injection of zebrafish Hmox1 mRNA into fertilized eggs was found to be sufficient for a dystrophin-independent restoration of normal muscle via an upregulation of cGMP levels. In addition, treatment of mdx(5cv) mice with the PDE5 inhibitor, sildenafil, which was one of the six drugs impacting the Hmox1 pathway in zebrafish, significantly increased the expression of Hmox1 protein, thus making Hmox1 a novel target for the improvement of dystrophic symptoms. These results demonstrate the translational relevance of our zebrafish model to mammalian models and support the use of zebrafish to screen for new drugs to treat human DMD. The discovery of a small molecule and a specific therapeutic pathway that might mitigate DMD disease progression could lead to significant clinical implications.


Subject(s)
Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism , Dystrophin/genetics , Heme Oxygenase-1/biosynthesis , Muscular Dystrophy, Duchenne/drug therapy , Animals , Cyclic GMP/biosynthesis , Disease Models, Animal , Drug Evaluation, Preclinical , Dystrophin/deficiency , Heme Oxygenase-1/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phosphodiesterase 5 Inhibitors/pharmacology , Piperazines/pharmacology , Purines/pharmacology , RNA, Messenger/genetics , Signal Transduction/genetics , Sildenafil Citrate , Sulfones/pharmacology , Up-Regulation , Zebrafish/genetics
5.
Biochem Biophys Res Commun ; 413(2): 358-63, 2011 Sep 23.
Article in English | MEDLINE | ID: mdl-21893049

ABSTRACT

Mutations in the gene encoding dysferlin cause two distinct muscular dystrophy phenotypes: limb-girdle muscular dystrophy type 2B (LGMD-2B) and Miyoshi myopathy (MM). Dysferlin is a large transmembrane protein involved in myoblast fusion and membrane resealing. Zebrafish represent an ideal animal model to use for studying muscle disease including abnormalities of dysferlin. cDNAs of zebrafish dysferlin were cloned (6.3 kb) and the predicted amino acid sequences, showed 68% similarity to predicted amino acid sequences of mammalian dysferlin. The expression of dysferlin was mainly in skeletal muscle, heart and eye, and the expression could be detected as early as 11h post fertilization (hpf). Three different antisense oligonucleotide morpholinos were targeted to inhibit translation of this dysferlin mRNA and the morpholino-injected fish showed marked muscle disorganization which could be detected by birefringence assay. Western blot analysis using dysferlin antibodies showed that the expression of dysferlin was reduced in each of the three morphants. Dysferlin expression was shown to be reduced at the myosepta of zebrafish muscle using immunohistochemistry, although the expression of other muscle membrane components, dystrophin, laminin, ß-dystroglycan were detected normally. Our data suggest that zebrafish dysferlin expression is involved in stabilizing muscle structures and its downregulation causes muscle disorganization.


Subject(s)
Membrane Proteins/metabolism , Muscle, Skeletal/abnormalities , Muscle, Skeletal/metabolism , Zebrafish Proteins/metabolism , Zebrafish/embryology , Amino Acid Sequence , Animals , Cloning, Molecular , DNA, Complementary/genetics , Dystroglycans/metabolism , Dystrophin/metabolism , Gene Knockdown Techniques , Laminin/metabolism , Membrane Proteins/genetics , Molecular Sequence Data , Morpholinos/genetics , Mutation , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...