Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Med Teach ; : 1-7, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36346810

ABSTRACT

INTRODUCTION: Advances in natural language understanding have facilitated the development of Virtual Standardized Patients (VSPs) that may soon rival human patients in conversational ability. We describe herein the development of an artificial intelligence (AI) system for VSPs enabling students to practice their history taking skills. METHODS: Our system consists of (1) Automated Speech Recognition (ASR), (2) hybrid AI for question identification, (3) classifier to choose between the two systems, and (4) automated speech generation. We analyzed the accuracy of the ASR, the two AI systems, the classifier, and student feedback with 620 first year medical students from 2018 to 2021. RESULTS: System accuracy improved from ∼75% in 2018 to ∼90% in 2021 as refinements in algorithms and additional training data were utilized. Student feedback was positive, and most students felt that practicing with the VSPs was a worthwhile experience. CONCLUSION: We have developed a novel hybrid dialogue system that enables artificially intelligent VSPs to correctly answer student questions at levels comparable with human SPs. This system allows trainees to practice and refine their history-taking skills before interacting with human patients.

2.
Med Phys ; 47(12): 6039-6052, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33118182

ABSTRACT

PURPOSE: The availability of radiographic magnetic resonance imaging (MRI) scans for the Ivy Glioblastoma Atlas Project (Ivy GAP) has opened up opportunities for development of radiomic markers for prognostic/predictive applications in glioblastoma (GBM). In this work, we address two critical challenges with regard to developing robust radiomic approaches: (a) the lack of availability of reliable segmentation labels for glioblastoma tumor sub-compartments (i.e., enhancing tumor, non-enhancing tumor core, peritumoral edematous/infiltrated tissue) and (b) identifying "reproducible" radiomic features that are robust to segmentation variability across readers/sites. ACQUISITION AND VALIDATION METHODS: From TCIA's Ivy GAP cohort, we obtained a paired set (n = 31) of expert annotations approved by two board-certified neuroradiologists at the Hospital of the University of Pennsylvania (UPenn) and at Case Western Reserve University (CWRU). For these studies, we performed a reproducibility study that assessed the variability in (a) segmentation labels and (b) radiomic features, between these paired annotations. The radiomic variability was assessed on a comprehensive panel of 11 700 radiomic features including intensity, volumetric, morphologic, histogram-based, and textural parameters, extracted for each of the paired sets of annotations. Our results demonstrated (a) a high level of inter-rater agreement (median value of DICE ≥0.8 for all sub-compartments), and (b) ≈24% of the extracted radiomic features being highly correlated (based on Spearman's rank correlation coefficient) to annotation variations. These robust features largely belonged to morphology (describing shape characteristics), intensity (capturing intensity profile statistics), and COLLAGE (capturing heterogeneity in gradient orientations) feature families. DATA FORMAT AND USAGE NOTES: We make publicly available on TCIA's Analysis Results Directory (https://doi.org/10.7937/9j41-7d44), the complete set of (a) multi-institutional expert annotations for the tumor sub-compartments, (b) 11 700 radiomic features, and (c) the associated reproducibility meta-analysis. POTENTIAL APPLICATIONS: The annotations and the associated meta-data for Ivy GAP are released with the purpose of enabling researchers toward developing image-based biomarkers for prognostic/predictive applications in GBM.


Subject(s)
Glioblastoma , Cohort Studies , Glioblastoma/diagnostic imaging , Humans , Magnetic Resonance Imaging , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...