Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Curr Issues Mol Biol ; 46(4): 3484-3501, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38666949

ABSTRACT

Ischemic stroke triggers a complex cascade of cellular and molecular events leading to neuronal damage and tissue injury. This review explores the potential therapeutic avenues targeting cellular signaling pathways implicated in stroke pathophysiology. Specifically, it focuses on the articles that highlight the roles of RhoA/ROCK and mTOR signaling pathways in ischemic brain injury and their therapeutic implications. The RhoA/ROCK pathway modulates various cellular processes, including cytoskeletal dynamics and inflammation, while mTOR signaling regulates cell growth, proliferation, and autophagy. Preclinical studies have demonstrated the neuroprotective effects of targeting these pathways in stroke models, offering insights into potential treatment strategies. However, challenges such as off-target effects and the need for tissue-specific targeting remain. Furthermore, emerging evidence suggests the therapeutic potential of MSC secretome in stroke treatment, highlighting the importance of exploring alternative approaches. Future research directions include elucidating the precise mechanisms of action, optimizing treatment protocols, and translating preclinical findings into clinical practice for improved stroke outcomes.

2.
Molecules ; 29(6)2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38542972

ABSTRACT

Cosmetic products are chemical substances or mixtures used on the skin, hair, nails, teeth, and the mucous membranes of the oral cavity, whose use is intended to clean, protect, correct body odor, perfume, keep in good condition, or change appearance. The analysis of cosmetic ingredients is often challenging because of their huge complexity and their adulteration. Among various analytical tools, mass spectrometry (MS) has been largely used for compound detection, ingredient screening, quality control, detection of product authenticity, and health risk evaluation. This work is focused on the MS applications in detecting and quantification of some common cosmetic ingredients, i.e., preservatives, dyes, heavy metals, allergens, and bioconjugates in various matrices (leave-on or rinse-off cosmetic products). As a global view, MS-based analysis of bioconjugates is a narrow field, and LC- and GC/GC×GC-MS are widely used for the investigation of preservatives, dyes, and fragrances, while inductively coupled plasma (ICP)-MS is ideal for comprehensive analysis of heavy metals. Ambient ionization approaches and advanced separation methods (i.e., convergence chromatography (UPC2)) coupled to MS have been proven to be an excellent choice for the analysis of scented allergens. At the same time, the current paper explores the challenges of MS-based analysis for cosmetic safety studies.


Subject(s)
Cosmetics , Metals, Heavy , Perfume , Cosmetics/chemistry , Perfume/analysis , Allergens/analysis , Preservatives, Pharmaceutical , Mass Spectrometry , Coloring Agents
3.
Biomed Res Int ; 2022: 4293172, 2022.
Article in English | MEDLINE | ID: mdl-36457344

ABSTRACT

Glycosphingolipids (GSLs) play numerous roles in cellular processes, including cell proliferation, apoptosis, inflammation, and cell signaling. Alteration of the GSLs metabolism leads to the accumulation of particular species of GSLs, which can lead to various pathologies, including carcinogenesis and metastasis; in essence, all neoplasms are characterized by the synthesis and aberrant organization of GSLs expressed on the cell surface. Secondary brain tumors make up the majority of intracranial cancers and generally present an unfavorable prognosis. In the present work, a native GSL mixture extracted and purified from a secondary brain tumor with primary pulmonary origin was obtained through extraction and purification and analyzed by MALDI TOF mass spectrometry. Research in the field of lipidomics could offer new data for the understanding of brain tropism and metastatic pathways, by studying the glycolipid molecules involved in the process of metastasis in general and in the production of brain metastases in particular. This could shed new light on the pattern of lipid glycosylation in secondary brain tumors, with a great impact on the effectiveness of cancer therapies, which could be adapted to the specific molecular pattern of the tumor.


Subject(s)
Brain Neoplasms , Glycolipids , Humans , Brain , Carcinogenesis , Tropism
4.
Comput Math Methods Med ; 2021: 6676681, 2021.
Article in English | MEDLINE | ID: mdl-33976707

ABSTRACT

Understanding the connection between different stimuli and the brain response represents a complex research area. However, the use of mathematical models for this purpose is relatively unexplored. The present study investigates the effects of three different auditory stimuli on cerebral biopotentials by means of mathematical functions. The effects of acoustic stimuli (S1, S2, and S3) on cerebral activity were evaluated by electroencephalographic (EEG) recording on 21 subjects for 20 minutes of stimulation, with a 5-minute period of silence before and after stimulation. For the construction of the mathematical models used for the study of the EEG rhythms, we used the Box-Jenkins methodology. Characteristic mathematical models were obtained for the main frequency bands and were expressed by 2 constant functions, 8 first-degree functions, a second-degree function, a fourth-degree function, 6 recursive functions, and 4 periodic functions. The values obtained for the variance estimator are low, demonstrating that the obtained models are correct. The resulting mathematical models allow us to objectively compare the EEG response to the three stimuli, both between the stimuli itself and between each stimulus and the period before stimulation.


Subject(s)
Acoustic Stimulation/methods , Brain/physiology , Evoked Potentials, Auditory/physiology , Models, Neurological , Acoustic Stimulation/statistics & numerical data , Alpha Rhythm/physiology , Beta Rhythm/physiology , Brain Mapping/statistics & numerical data , Computational Biology , Computer Simulation , Delta Rhythm/physiology , Electroencephalography/statistics & numerical data , Humans , Male , Signal Processing, Computer-Assisted , Theta Rhythm/physiology , Young Adult
5.
Methods Mol Biol ; 951: 145-69, 2013.
Article in English | MEDLINE | ID: mdl-23296530

ABSTRACT

Capillary electrophoresis (CE) is a resourceful and versatile separation method for the analysis of complex carbohydrate mixtures. In combination with electrospray ionization (ESI) mass spectrometry (MS), CE enables fast, sensitive, and efficient separations for the accurate identification of a large variety of glycoform mixture types. In this chapter several reliable off- and on-line CE-based methods for the analysis of glycoforms with ESI MS/MS are presented. The first part of this chapter is dedicated to the application of off-line CE/ESI MS to complex mixtures of O-glycopeptides and mixtures of proteoglycan-derived O-glycans, i.e., glycosaminoglycans such as depolymerized hybrid chains of chondroitin sulfate (CS) and dermatan sulfate (DS). Procedures for off-line fractionation of these heterogeneous mixtures followed by ESI MS screening and sequencing of single glycoforms by collision-induced dissociation (CID) at low energies are also described. Ample sections are further devoted to on-line CE/ESI MS technique and its application to separation and identification of O-glycopeptides and CS/DS oligosaccharides. The concept and construction principles of two different sheathless CE/ESI MS interfaces together with the protocols to be applied for successful on-line analysis of O-glycopeptides and CS/DS oligosaccharides are presented in details in the last part of the chapter.


Subject(s)
Electrophoresis, Capillary/methods , Glycopeptides/analysis , Glycopeptides/chemistry , Glycosaminoglycans/analysis , Glycosaminoglycans/isolation & purification , Spectrometry, Mass, Electrospray Ionization/methods , Carbohydrate Sequence , Chondroitin Sulfates/chemistry , Dermatan Sulfate/chemistry , Electrophoresis, Capillary/instrumentation , Glycopeptides/isolation & purification , Glycosaminoglycans/chemistry , Glycosylation , Molecular Sequence Data , Nanotechnology , Spectrometry, Mass, Electrospray Ionization/instrumentation , Tandem Mass Spectrometry
6.
Methods Mol Biol ; 836: 145-59, 2012.
Article in English | MEDLINE | ID: mdl-22252633

ABSTRACT

Chondroitin sulfate (CS) and dermatan sulfate (DS) glycosaminoglycans (GAGs) are covalently linked to proteins, building up a wide range of proteoglycans, with a prevalent expression in the extracellular matrix (ECM). In mammalian tissues, these GAG species are often found as hybrid CS/DS chains. Their structural diversity during chain elongation is produced by variability of sulfation in the repeating disaccharide units. In central nervous system, a large proportion of the ECM is composed of proteoglycans; therefore, CS/DS play a significant role in the functional diversity of neurons, brain development, and some brain diseases. A requirement for collecting consistent data on brain proteoglycan glycosylation is the development of adequate protocols for CS/DS extraction and detailed compositional and structure analysis. This chapter will present a strategy, which combines biochemical tools for brain CS/DS extraction, purification, and fractionation, with a modern analytical platform based on chip-nanoelectrospray multistage mass spectrometry (MS) able to provide information on the essential structural elements such as epimerization, chain length, sulfate content, and sulfation sites.


Subject(s)
Brain Chemistry , Brain/metabolism , Chondroitin/chemistry , Chondroitin/isolation & purification , Dermatan Sulfate/chemistry , Dermatan Sulfate/isolation & purification , Animals , Humans , Spectrometry, Mass, Electrospray Ionization
7.
J Mass Spectrom ; 47(12): 1561-70, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23280744

ABSTRACT

Gangliosides (GGs), sialic acid-containing glycosphingolipids are involved in many brain functions at the cell and molecular level. Compositional and structural elucidation of GGs in mixtures extracted from human brain is essential for correlating their profile with the specialized function of each brain area in health and disease. As a part of our ongoing study on GG expression and structure in different healthy and diseased brain regions, in this work, a preliminary investigation of GGs in a specimen of human caudate nucleus (CN) was carried out using an advanced mass spectrometry (MS) technique. By chip-nanoelectrospray MS performed on a NanoMate robot coupled to a high capacity ion trap instrument, 81 GG components were detected in human CN in only 1.5 min of signal acquisition. Although the native GG mixture from CN was found dominated by mono-, di- and trisialylated GGs with a slight dominance of disialylated forms (GD), four tetrasialylated structures (GQ) and two pentasialylated (GP) species were also identified. Additionally, species with unusually long fatty acid chains, exceeding 30 carbon atoms in their ceramide (Cer) composition, and several glycoforms modified by fucosyl (Fuc), O-acetyl (O-Ac) and/or lactonization were discovered. By tandem MS (MS(2) ) using collision-induced dissociation, two atypical mono and disialylated species with long-chain fatty acids in their Cer could be confirmed and structurally characterized. These results may be a starting point for new GG-based approaches in the study of CN functions and ethiopathogenesis of CN-related neurodegenerative disorders.


Subject(s)
Caudate Nucleus/chemistry , Gangliosides/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Adult , Carbohydrate Sequence , Humans , Lab-On-A-Chip Devices , Male , Nanotechnology
8.
Biochim Biophys Acta ; 1811(11): 897-917, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21958495

ABSTRACT

In the past few years, a considerable effort was invested in interfacing mass spectrometry (MS) to microfluidics-based systems for electrospray ionization (ESI). Since its first introduction in biological mass spectrometry, chip-based ESI demonstrated a high potential to discover novel structures of biomarker value. Therefore, recently, microfluidics for electrospray in conjunction with advanced MS instruments able to perform multistage fragmentation were introduced also in glycolipid research. This review is focused on the strategies, which allowed a successful application of chip technology for ganglioside mapping and sequencing by ESI MS and tandem MS (MS/MS). The first part of the review is dedicated to the progress of MS methods in brain ganglioside research, which culminated with the introduction of two types of microfluidic devices: the NanoMate robot and a polymer microchip for electrospray. In the second part a systematic description of most relevant results obtained by using MS in combination with the two chip systems is presented. Chip-based ESI accomplishments for determination of ganglioside expression and structure in normal brain regions and brain pathologies such as neurodegenerative diseases and primary brain tumors are described together with some considerations upon the perspectives of microfluidics-MS to be routinely introduced in biomedical investigation.


Subject(s)
Brain/metabolism , Gangliosides/analysis , Microfluidic Analytical Techniques/methods , Nanotechnology/methods , Spectrometry, Mass, Electrospray Ionization/methods , Animals , Brain/pathology , Gangliosides/chemistry , Humans
9.
J Am Soc Mass Spectrom ; 22(12): 2145-59, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22002228

ABSTRACT

Gangliosides (GGs), sialic acid-containing glycosphingolipids, are known to be involved in the invasive/metastatic behavior of brain tumor cells. Development of modern methods for determination of the variations in GG expression and structure during neoplastic cell transformation is a priority in the field of biomedical analysis. In this context, we report here on the first optimization and application of chip-based nanoelectrospray (NanoMate robot) mass spectrometry (MS) for the investigation of gangliosides in a secondary brain tumor. In our work a native GG mixture extracted and purified from brain metastasis of lung adenocarcinoma was screened by NanoMate robot coupled to a quadrupole time-of-flight MS. A native GG mixture from an age-matched healthy brain tissue, sampled and analyzed under identical conditions, served as a control. Comparative MS analysis demonstrated an evident dissimilarity in GG expression in the two tissue types. Brain metastasis is characterized by many species having a reduced N-acetylneuraminic acid (Neu5Ac) content, however, modified by fucosylation or O-acetylation such as Fuc-GM4, Fuc-GM3, di-O-Ac-GM1, O-Ac-GM3. In contrast, healthy brain tissue is dominated by longer structures exhibiting from mono- to hexasialylated sugar chains. Also, significant differences in ceramide composition were discovered. By tandem MS using collision-induced dissociation at low energies, brain metastasis-associated GD3 (d18:1/18:0) species as well as an uncommon Fuc-GM1 (d18:1/18:0) detected in the normal brain tissue could be structurally characterized. The novel protocol was able to provide a reliable compositional and structural characterization with high analysis pace and at a sensitivity situated in the fmol range.


Subject(s)
Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/secondary , Gangliosides/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Microchip Analytical Procedures/methods , Spectrometry, Mass, Electrospray Ionization/methods , Adenocarcinoma of Lung , Aged , Brain Chemistry , Case-Control Studies , Chromatography, Thin Layer , Densitometry , Gangliosides/analysis , Gangliosides/biosynthesis , Gangliosides/chemistry , Humans , Male , Tandem Mass Spectrometry
10.
Biochim Biophys Acta ; 1811(9): 513-35, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21704187

ABSTRACT

In the past few years, a considerable effort was invested in interfacing mass spectrometry (MS) to microfluidics-based systems for electrospray ionization (ESI). Since its first introduction in biological mass spectrometry, chip-based ESI demonstrated a high potential to discover novel structures of biomarker value. Therefore, recently, microfluidics for electrospray in conjunction with advanced MS instruments able to perform multistage fragmentation were introduced also in glycolipid research. This review is focused on the strategies, which allowed a successful application of chip technology for ganglioside mapping and sequencing by ESI MS and tandem MS (MS/MS). The first part of the review is dedicated to the progress of MS methods in brain ganglioside research, which culminated with the introduction of two types of microfluidic devices: the NanoMate robot and a polymer microchip for electrospray. In the second part a systematic description of most relevant results obtained by using MS in combination with the two chip systems is presented. Chip-based ESI accomplishments for determination of ganglioside expression and structure in normal brain regions and brain pathologies such as neurodegenerative diseases and primary brain tumors are described together with some considerations upon the perspectives of microfluidics-MS to be routinely introduced in biomedical investigation.


Subject(s)
Brain Chemistry , Gangliosides/analysis , Mass Spectrometry/instrumentation , Mass Spectrometry/methods , Microfluidic Analytical Techniques/methods , Animals , Brain/anatomy & histology , Brain/metabolism , Carbohydrate Conformation , Carbohydrate Sequence , Humans , Molecular Sequence Data , Molecular Structure
11.
Electrophoresis ; 32(13): 1591-609, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21604285

ABSTRACT

Gangliosides, sialic-acid-containing glycosphingolipids are involved in numerous biological processes and play essential roles in severe pathologies, with predilection in those of the central nervous system. Formerly, ganglioside composition and quantity were assessed exclusively by thin-layer chromatographic (TLC), immunochemical, and immunohistochemical methods, which have limited effectiveness being unable to detect minor components in mixtures of high heterogeneity. Increased awareness of the biological importance of gangliosides stimulated the development of analytical methods that are better amenable to complex ganglioside mixtures. More recently, MS in online conjunction with high-performance separation techniques brought a significant progress to the field. This review highlights the state-of-the-art development and application of separation methods online coupled to MS for ganglioside analysis. Most original and successful protocols based on GC-MS, LC-MS, and CE-MS are presented here together with the special instrumental and sample preparation requirements to be met for effective ganglioside separation, detection, and structural identification. Finally, the advantages and downsides of each methodology as well as the perspectives for simplification, standardization, and upgrading are assessed.


Subject(s)
Chromatography, Gas/methods , Chromatography, Liquid/methods , Electrophoresis, Capillary/methods , Gangliosides/isolation & purification , Mass Spectrometry/methods , Animals , Humans , Mice , Rats
12.
Amino Acids ; 41(2): 235-56, 2011 Jul.
Article in English | MEDLINE | ID: mdl-20632047

ABSTRACT

Chondroitin sulfate (CS) and dermatan sulfate (DS) are special types of glycosaminoglycan (GAG) oligosaccharides able to regulate vital biological functions that depend on precise motifs of their constituent hexose sequences and the extent and location of their sulfation. As a result, the need for better understanding of CS/DS biological role called for the elaboration and application of straightforward strategies for their composition and structure elucidation. Due to its high sensitivity, reproducibility, and the possibility to rapidly generate data on fine CS/DS structure determinants, mass spectrometry (MS) based on either electrospray ionization (ESI) or matrix-assisted laser desorption/ionization (MALDI) brought a major progress in the field. Here, modern developments in MS of CS/DS GAGs are gathered in a critical review covering the past 5 years. The first section is dedicated to protocols for CS/DS extraction from parent proteoglycan, digestion, and purification that are among critical prerequisites of a successful MS experiment. The second part highlights several MALDI MS aspects, the requirements, and applications of this ionization method to CS/DS investigation. An ample chapter is devoted to ESI MS strategies, which employ either capillary- or advanced chip-based sample infusion in combination with multistage MS (MS(n)) using either collision-induced (CID) or electron detachment dissociation (EDD). At last, the potential of two versatile separation techniques, capillary electrophoresis (CE), and liquid chromatography (LC) in off- and/or on-line coupling with ESI MS and MS(n), is discussed, alongside an assessment of particular buffer/solvent conditions and instrumental parameters required for CS/DS mixture separation followed by on-line mass analysis of individual components.


Subject(s)
Chondroitin Sulfates/chemistry , Dermatan Sulfate/chemistry , Glycosaminoglycans/chemistry , Mass Spectrometry/methods , Animals , Carbohydrate Sequence , Chondroitin Sulfates/metabolism , Chromatography, High Pressure Liquid/methods , Dermatan Sulfate/metabolism , Electrophoresis, Capillary/methods , Glycosaminoglycans/metabolism , Humans , Proteoglycans/chemistry , Proteoglycans/metabolism , Sequence Analysis/methods
13.
Anal Bioanal Chem ; 395(8): 2489-98, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19826794

ABSTRACT

Chondroitin sulfate (CS) and dermatan sulfate (DS) glycosaminoglycans display variability of sulfation in their constituent disaccharide repeats during chain elongation. Since a large proportion of the extracellular matrix of the central nervous system (CNS) is composed of proteoglycans, CS/DS disaccharide degree and profile of sulfation play important roles in the functional diversity of neurons, brain development, and some of its pathological states. To investigate the sulfation pattern of CS/DS structures expressed in CNS, we introduced here a novel method based on an advanced system encompassing fully automated chip nanoelectrospray ionization (nanoESI) in the negative ion mode and high capacity ion trap multistage mass spectrometry (MS(2)-MS(3)) by collision-induced dissociation (CID). This method, introduced here for the first time in glycomics of brain glycosaminoglycans, was particularly applied to structural investigation of disaccharides obtained by beta-elimination and digestion with chondroitin B and AC I lyase of hybrid CS/DS chains from wild-type mouse brain. Screening in the chip-MS mode of DS disaccharide fraction resulting after depolymerization with chondroitin B lyase revealed molecular ions assigned to monosulfated disaccharide species having a composition of 4,5-Delta-[IdoA-GalNAc]. By optimized CID MS(2)-MS(3), fragment ions supporting the localization of sulfate ester group at C4 within GalNAc were produced. Chip ESI MS profiling of CS disaccharide fraction obtained by depolymerization of the same CS/DS chain using chondroitin AC I lyase indicated the occurrence of mono- and bisulfated 4,5-Delta-[GlcA-GalNAc]. The site of oversulfation was determined by MS(2)-MS(3), which provided sequence patterns consistent with a rare GlcA-3-sulfate-GalNAc-6-sulfate structural motif. Figure Mouse brain GlcA-3-sulfate-GalNAc-6-sulfate structural motif.


Subject(s)
Brain/metabolism , Chondroitin Sulfates/analysis , Dermatan Sulfate/analysis , Glycosaminoglycans/chemistry , Glycosaminoglycans/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Sulfates/analysis , Animals , Disaccharides/analysis , Mice , Mice, Inbred C57BL , Nanotechnology
14.
Anal Bioanal Chem ; 395(8): 2465-77, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19841910

ABSTRACT

We report here on a preliminary investigation of ganglioside composition and structure in human hemangioma, a benign tumor in the frontal cortex (HFC) in comparison to normal frontal cortex (NFC) tissue using for the first time advanced mass spectrometric methods based on fully automated chip-nanoelectrospray (nanoESI) high-capacity ion trap (HCT) and collision-induced dissociation (CID). The high ionization efficiency, sensitivity and reproducibility provided by the chip-nanoESI approach allowed for a reliable MS-based ganglioside comparative assay. Unlike NFC, ganglioside mixture extracted from HFC was found dominated by species of short glycan chains exhibiting lower overall sialic acid content. In HFC, only GT1 (d18:1/20:0), and GT3 (d18:1/25:1) polysialylated species were detected. Interestingly, none of these trisialylated forms was detected in NFC, suggesting that such components might selectively be associated with HFC. Unlike the case of previously investigated high malignancy gliosarcoma, in HFC one modified O-Ac-GD2 and one modified O-Ac-GM4 gangliosides were observed. This aspect suggests that these O-acetylated structures could be associated with cerebral tumors having reduced malignancy grade. Fragmentation analysis by CID in MS(2) mode using as precursors the ions corresponding to GT1 (d18:1/20:0) and GD1 (d18:1/20:0) provided data corroborating for the first time the presence of the common GT1a and GT1b isomers and the incidence of unusual GT1c and GT1d glycoforms in brain hemangioma tumor.


Subject(s)
Biomarkers, Tumor/metabolism , Brain Neoplasms/metabolism , Gangliosides/chemistry , Gangliosides/metabolism , Hemangioma/metabolism , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Adult , Brain/metabolism , Brain Neoplasms/pathology , Case-Control Studies , Cerebral Cortex/metabolism , Frontal Lobe/metabolism , Hemangioma/pathology , Humans , Isomerism , Male , N-Acetylneuraminic Acid/analysis , Nanotechnology
15.
J Mass Spectrom ; 44(10): 1434-42, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19658121

ABSTRACT

We developed a straightforward approach for high-throughput top-down glycolipidomics based on fully automated chip-nanoelectrospray (nanoESI) high-capacity ion trap (HCT) multistage mass spectrometry (MSn) by collision-induced dissociation (CID) in the negative ion mode. The method was optimized and tested on a polysialylated ganglioside fraction (GT1b), which was profiled by MS1 and sequenced in tandem MS up to MS6 in the same experiment. Screening of the fraction in the MS1 mode indicated the occurrence of six [M-2H]2- ions which, according to calculation, support 13 GT1 variants differing in their relative molecular mass due to dissimilar ceramide (Cer) constitutions. By stepwise CID MS2-MS5 on the doubly charged ion at m/z 1077.20 corresponding to a ubiquitous GT1b structure, the complete characterization of its oligosaccharide core including the identification of sialylation sites was achieved. Structure of the lipid moiety was further elucidated by CID MS6 analysis carried out using the Y0 fragment ion, detected in MS5, as a precursor. MS6 fragmentation resulted in a pattern supporting a single ceramide form having the less common (d20 : 1/18 : 0) configuration. The entire top-down experiment was performed in a high-throughput regime in less than 3 min of measurement, with an analysis sensitivity situated in the subpicomolar range.


Subject(s)
Ceramides/analysis , Gangliosides/analysis , Nanotechnology/methods , Oligosaccharides/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Animals , Brain Chemistry , Carbohydrate Sequence , Cattle , Chemical Fractionation , High-Throughput Screening Assays , Sequence Analysis
16.
Eur J Mass Spectrom (Chichester) ; 15(4): 541-53, 2009.
Article in English | MEDLINE | ID: mdl-19661562

ABSTRACT

Gangliosides (GGs), a large group of sialylated glycosphingolipids, are considered biomarkers of human brain development, aging and certain diseases. Determination of individual GG components in complex mixtures extracted from a human brain represents a fundamental prerequisite for correlating their specificity with the specialized function of each brain area. In the context of modern glycomics, detailed investigation of GG expression and structure in human brain requires a continuous development and application of innovative methods able to improve the quality of data and speed of analysis. In this work, for the first time, a high-throughput mapping and sequencing of gangliosides in human fetal brain was performed by a novel mass spectrometry (MS)-based approach developed recently in our laboratory. Three GG mixtures extracted and purified from different regions of the same fetal brain in the 36th gestational week: frontal neocortex (NEO36), white matter of the frontal lobe (FL36) and white matter of the occipital lobe (OL36) were subjected to comparative high-throughput screening and multi-stage fragmentation by fully automated chip-based nanoelectrospray ionization (nanoESI) high capacity ion trap (HCT) MS. Using this method, in only a few minutes of signal acquisitions, over 100 GG and asialo-GG species were detected and identified in the three mixtures. Obtained data revealed for the first time that differences in GG expression in human fetal brain are dependent on phylogenetic development rather than topographic factors. While a significant variation of GG distribution in NEO36 vs FL36 was observed, no significant differences in GG expression in white matter of frontal vs occipital lobe were detected. Additionally, the largest number of species was identified in NEO36, which correlates with the functional complexity of neocortex as the newest brain region. In the last stage of analysis, using MS(2)-MS(3) molecular ion fragmentation at variable amplitudes, a NEO36-associated GD1b isomer could clearly be discriminated. Present results indicate that the combination of fully automated chipESI with HCT MS(n) is able to provide ultra-fast, sensitive and reliable analyses of complex lipid-linked carbohydrates from which the pattern of their expression and structure in a certain type of bio-matrix can be determined.


Subject(s)
Aborted Fetus/chemistry , Brain Chemistry , Gangliosides/analysis , Microchip Analytical Procedures/methods , Spectrometry, Mass, Electrospray Ionization/methods , Frontal Lobe/chemistry , Humans , Isomerism , Microchip Analytical Procedures/economics , Neocortex/chemistry , Occipital Lobe/chemistry , Sensitivity and Specificity , Spectrometry, Mass, Electrospray Ionization/economics , Time Factors
17.
Proteomics ; 9(13): 3435-44, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19557760

ABSTRACT

We report on a novel strategy for identification of specific sulfation motifs in chondroitin/dermatan sulfate (CS/DS) chain derived from decorin (Dcn), based on enzyme cleavage and multistage MS (MS(n)). Released CS/DS chains were digested with chondroitin B and in parallel with AC I lyases to obtain oligosaccharides of known hexuronic acid (HexA) epimerization. The depolymerized chains were separated by gel filtration, and collected di- and hexasaccharides were analyzed by ESI MS(n). MS(2) on bisulfated 4,5-Delta-HexAGalNAc revealed an additional sulfate ester group at 4,5-Delta-HexA. MS(2) data provided evidence upon GlcA sulfation in Dcn due to the fact that 4,5-Delta-HexA derived from GlcA after chondroitin AC I lyase treatment. Hexasaccharide screening in the MS(1) mode indicated direct correlation between the sulfate distribution and HexA epimerization. MS(n) performed on ions that, according to mass calculation, correspond to pentasulfated [4,5-Delta-HexAGalNAc(GlcAGalNAc)(2)], trisulfated [4,5-Delta-HexAGalNAc(GlcAGalNAc)(2)] with IdoA-derived 4,5-Delta-HexA at the nonreducing end, tetrasulfated [4,5-Delta-HexAGalNAc(IdoAGalNAc)(2)] and monosulfated [4,5-Delta-HexAGalNAc(IdoAGalNAc)(2)] with GlcA-derived 4,5-Delta-HexA at the nonreducing end rendered fragmentation patterns confirming the presence of over-, regular, and under-sulfated regions as well as structural motifs having both types of HexA sulfated within Dcn CS/DS.


Subject(s)
Chondroitin Lyases/metabolism , Glycosaminoglycans/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Sulfur/chemistry , Tandem Mass Spectrometry/methods , Carbohydrate Sequence , Decorin , Extracellular Matrix Proteins/isolation & purification , Glycosaminoglycans/chemistry , Glycosaminoglycans/metabolism , Humans , Oligosaccharides/analysis , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Proteoglycans/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...