Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 39(36): 8501-10, 2010 Sep 28.
Article in English | MEDLINE | ID: mdl-20520868

ABSTRACT

A supported ionic liquid phase (SILP) catalyst prepared from [PrMIM][Ph(2)P(3-C(6)H(4)SO(3))] (PrMIM = 1-propyl-3-methylimidazolium), [Rh(CO)(2)(acac)] (acacH = 2,4-pentanedione) [OctMIM]NTf(2) (OctMIM = 1-n-octyl-3-methylimidazolium, Tf = CF(3)SO(2)) and microporous silica has been used for the continuous flow hydroformylation of 1-octene in the presence of compressed CO(2). Statistical experimental design was used to show that the reaction rate is neither much affected by the film thickness (IL loading) nor by the syngas:substrate ratio. However, a factor-dependent interaction between the syngas:substrate ratio and film thickness on the reaction rate was revealed. Increasing the substrate flow led to increased reaction rates but lower overall yields. One of the most important parameters proved to be the phase behaviour of the mobile phase, which was studied by varying the reaction pressure. At low CO(2) pressures or when N(2) was used instead of CO(2) rates were low because of poor gas diffusion to the catalytic sites in the SILP. Furthermore, leaching of IL and Rh was high because the substrate is liquid and the IL had been designed to dissolve in it. As the CO(2) pressure was increased, the reaction rate increased and the IL and Rh leaching were reduced, because an expanded liquid phase developed. Due to its lower viscosity the expanded liquid allows better transport of gases to the catalyst and is a poorer solvent for the IL and the catalyst because of its reduced polarity. Above 100 bar (close to the transition to a single phase at 106 bar), the rate of reaction dropped again with increasing pressure because the flowing phase becomes a better and better solvent for the alkene, reducing its partitioning into the IL film. Under optimised conditions, the catalyst was shown to be stable over at least 40 h of continuous catalysis with a steady state turnover frequency (TOF, mol product (mol Rh)(-1)) of 500 h(-1) at low Rh leaching (0.2 ppm). The selectivity of the catalyst was not much affected by the variation of process parameters. The linear:branched (l:b) ratios were ca. 3, similar to that obtained using the very same catalyst in conventional organic solvents.

2.
Chem Commun (Camb) ; (1): 107-9, 2005 Jan 07.
Article in English | MEDLINE | ID: mdl-15614388

ABSTRACT

The combination of ionic liquids (ILs) as solvents in the asymmetric Sharpless dihydroxylation (AD) with the use of scCO(2) in the separation process allows a very simple, efficient, clean and robust system for the reuse of the AD catalytic system, which also does not need the use of organic solvents either for the reaction or for the separation of products and allows the isolation of the diol, in high yield and enantiomeric excess and basically without contamination with osmium.

SELECTION OF CITATIONS
SEARCH DETAIL
...