Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Transl Allergy ; 13(11): e12313, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38006382

ABSTRACT

BACKGROUND: Hereditary angioedema (HAE) is a potentially life-threatening inherited disease that causes recurrent, serious, and debilitating episodes of swelling. While evidence has improved in adult patients, data on the epidemiology and treatment of pediatric patients with HAE remain very limited. The aim of this study was to determine the incidence and prevalence of pediatric patients with HAE aged <12 years, as well as treatment patterns, co-medication, and specialties involved. METHODS: In this retrospective study (2016-2021), the German IQVIATM pharmacy claims (LRx) database was used to analyze prescriptions of HAE-specific treatments and co-medications. RESULTS: We found an HAE prevalence in pediatric patients aged <12 years of 2.51:100,000 and a 12-month prevalence of up to 1.02:100,000 between 2016 and 2021. Most HAE treatments were prescribed by outpatient clinics and pediatricians, with an increasing proportion of icatibant as an on-demand treatment and low rates of long-term prophylaxis (LTP). The prescription rate of analgesics as the most common co-medication decreased notably after HAE diagnosis. CONCLUSION: Our findings provide insights into the epidemiology and current pediatric HAE treatment landscape in Germany. The obtained HAE prevalence in pediatric patients aged <12 years was even higher than the previously reported average of overall cohorts, whereas the LTP rate was low, which might indicate an unmet need for newer LTP treatment options in pediatric patients.

2.
J Neurotrauma ; 40(23-24): 2680-2693, 2023 12.
Article in English | MEDLINE | ID: mdl-37476968

ABSTRACT

This study aims to determine the effect of neurogenic, inflammatory, and infective fevers on acutely injured human spinal cord. In 86 patients with acute, severe traumatic spinal cord injuries (TSCIs; American Spinal Injury Association Impairment Scale (AIS), grades A-C) we monitored (starting within 72 h of injury, for up to 1 week) axillary temperature as well as injury site cord pressure, microdialysis (MD), and oxygen. High fever (temperature ≥38°C) was classified as neurogenic, infective, or inflammatory. The effect of these three fever types on injury-site physiology, metabolism, and inflammation was studied by analyzing 2864 h of intraspinal pressure (ISP), 1887 h of MD, and 840 h of tissue oxygen data. High fever occurred in 76.7% of the patients. The data show that temperature was higher in neurogenic than non-neurogenic fever. Neurogenic fever only occurred with injuries rostral to vertebral level T4. Compared with normothermia, fever was associated with reduced tissue glucose (all fevers), increased tissue lactate to pyruvate ratio (all fevers), reduced tissue oxygen (neurogenic + infective fevers), and elevated levels of pro-inflammatory cytokines/chemokines (infective fever). Spinal cord metabolic derangement preceded the onset of infective but not neurogenic or inflammatory fever. By considering five clinical characteristics (level of injury, axillary temperature, leukocyte count, C-reactive protein [CRP], and serum procalcitonin [PCT]), it was possible to confidently distinguish neurogenic from non-neurogenic high fever in 59.3% of cases. We conclude that neurogenic, infective, and inflammatory fevers occur commonly after acute, severe TSCI and are detrimental to the injured spinal cord with infective fever being the most injurious. Further studies are required to determine whether treating fever improves outcome. Accurately diagnosing neurogenic fever, as described, may reduce unnecessary septic screens and overuse of antibiotics in these patients.


Subject(s)
Spinal Cord Injuries , Spinal Cord , Humans , Spinal Cord/metabolism , Spinal Cord Injuries/metabolism , Body Temperature , Inflammation , Oxygen
3.
Article in English | MEDLINE | ID: mdl-37019668

ABSTRACT

BACKGROUND AND OBJECTIVES: Spinal cord injury (SCI) disrupts the fine-balanced interaction between the CNS and immune system and can cause maladaptive aberrant immune responses. The study examines emerging autoantibody synthesis after SCI with binding to conformational spinal cord epitopes and surface peptides located on the intact neuronal membrane. METHODS: This is a prospective longitudinal cohort study conducted in acute care and inpatient rehabilitation centers in conjunction with a neuropathologic case-control study in archival tissue samples ranging from acute injury (baseline) to several months thereafter (follow-up). In the cohort study, serum autoantibody binding was examined in a blinded manner using tissue-based assays (TBAs) and dorsal root ganglia (DRG) neuronal cultures. Groups with traumatic motor complete SCI vs motor incomplete SCI vs isolated vertebral fracture without SCI (controls) were compared. In the neuropathologic study, B cell infiltration and antibody synthesis at the spinal lesion site were examined by comparing SCI with neuropathologically unaltered cord tissue. In addition, the CSF in an individual patient was explored. RESULTS: Emerging autoantibody binding in both TBA and DRG assessments was restricted to an SCI patient subpopulation only (16%, 9/55 sera) while being absent in vertebral fracture controls (0%, 0/19 sera). Autoantibody binding to the spinal cord characteristically detected the substantia gelatinosa, a less-myelinated region of high synaptic density involved in sensory-motor integration and pain processing. Autoantibody binding was most frequent after motor complete SCI (grade American Spinal Injury Association impairment scale A/B, 22%, 8/37 sera) and was associated with neuropathic pain medication. In conjunction, the neuropathologic study demonstrated lesional spinal infiltration of B cells (CD20, CD79a) in 27% (6/22) of patients with SCI, the presence of plasma cells (CD138) in 9% (2/22). IgG and IgM antibody syntheses colocalized to areas of activated complement (C9neo) deposition. Longitudinal CSF analysis of an additional single patient demonstrated de novo (IgM) intrathecal antibody synthesis emerging with late reopening of the blood-spinal cord barrier. DISCUSSION: This study provides immunologic, neurobiological, and neuropathologic proof-of-principle for an antibody-mediated autoimmunity response emerging approximately 3 weeks after SCI in a patient subpopulation with a high demand of neuropathic pain medication. Emerging autoimmunity directed against specific spinal cord and neuronal epitopes suggests the existence of paratraumatic CNS autoimmune syndromes.


Subject(s)
Neuralgia , Spinal Cord Injuries , Spinal Fractures , Humans , Longitudinal Studies , Cohort Studies , Prospective Studies , Case-Control Studies , Spinal Fractures/complications , Spinal Cord Injuries/complications , Spinal Cord Injuries/pathology , Spinal Cord Injuries/rehabilitation , Neuralgia/etiology , Autoantibodies , Epitopes
SELECTION OF CITATIONS
SEARCH DETAIL
...