Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Fundam Clin Pharmacol ; 37(6): 1109-1118, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37249014

ABSTRACT

OBJECTIVES: The aim of this work was to elucidate the role of GalR2 receptor activation in protecting the rat heart in vivo from ischemia/reperfusion (I/R) damage by a pharmacological peptide agonist WTLNSAGYLLGPßAH-OH (G1) and full-length rat galanin GWTLNSAGYLLGPHAIDNHRSFSDKHGLT-NH2 (G2) using M871, a selective inhibitor of GalR2. METHODS: The peptides were prepared by the automatic solid-phase synthesis using the Fmoc-strategy and purified by high-performance liquid chromatography (HPLC). A 40-min left anterior descending (LAD) coronary artery occlusion followed by a 60-min reperfusion was performed. The criteria for damage/protection of the heart were the infarct size (IS) and plasma activity of creatine kinase-MB (CK-MB) at the end of reperfusion. RESULTS: Intravenous injection of G1 or G2 at an optimal dose of 1 mg/kg at the fifth minute of reperfusion significantly reduced the IS (by 35% and 32%, respectively) and activity of CK-MB at the end of reperfusion (by 43% and 38%, respectively) compared with the control. Administration of M871 (8 mg/kg) 5 min before the onset of reperfusion abolished the effects of G1 on IS and CK-MB activity, returning them to control values. Co-administration of M871 (8 mg/kg) with G2 attenuated protective effect of G2 on both IS and plasma СK-MB activity. However, differences in these parameters between the M871+G2 and G2 groups did not reach statistical significance (P = 0.139 and P = 0.121, respectively). CONCLUSION: Thus, GalR2 is the principal receptor subtype that transduces the protective effects of galanin and ligand G1 in myocardial I/R injury. This suggests that GalR2-specific peptide agonists could be used as drug candidates for treating ischemic heart disease.


Subject(s)
Myocardial Reperfusion Injury , Rats , Animals , Myocardial Reperfusion Injury/drug therapy , Myocardial Reperfusion Injury/prevention & control , Galanin/chemistry , Galanin/pharmacology , Galanin/therapeutic use , Rats, Wistar , Heart , Peptides/pharmacology , Myocardium
2.
Biochemistry (Mosc) ; 87(4): 346-355, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35527373

ABSTRACT

Neuropeptide galanin and its N-terminal fragments reduce the generation of reactive oxygen species and normalize metabolic and antioxidant states of myocardium in experimental cardiomyopathy and ischemia/reperfusion injury. The aim of this study was to elucidate the effect of WTLNSAGYLLGPßAH-OH (peptide G), a pharmacological agonist of the galanin receptor GalR2, on the cardiac injury induced by administration of streptozotocin (STZ) in rats. Peptide G was prepared by solid phase peptide synthesis using the Fmoc strategy and purified by preparative HPLC; its structure was confirmed by 1H-NMR spectroscopy and MALDI-TOF mass spectrometry. Experimental animals were randomly distributed into five groups: C, control; S, STZ-treated; SG10, STZ + peptide G (10 nmol/kg/day); SG50, STZ + peptide G (50 nmol/kg/day); G, peptide G (50 nmol/kg/day). Administration of peptide G prevented hyperglycemia in SG50 rats. By the end of the experiment, the ATP content, total pool of adenine nucleotides, phosphocreatine (PCr) content, and PCr/ATP ratio in the myocardium of animals of the SG50 group were significantly higher than in rats of the S group. In the SG50 and SG10 groups, the content of lactate and lactate/pyruvate ratio in the myocardium were reduced, while the glucose content was increased vs. the S group. Both doses of peptide G reduced the activation of creatine kinase-MB and lactate dehydrogenase, as well as the concentration of thiobarbituric acid reactive products in the blood plasma of STZ-treated rats to the control values. Taken together, these results suggest that peptide G has cardioprotective properties in type 1 diabetes mellitus. Possible mechanisms of peptide G action in the STZ-induced diabetes are discussed.


Subject(s)
Diabetes Mellitus, Experimental , Heart Injuries , Adenosine Triphosphate , Animals , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Lactates , Peptides/pharmacology , Rats , Rats, Wistar , Receptors, Galanin/agonists , Receptors, Galanin/metabolism , Streptozocin
3.
Biochemistry (Mosc) ; 86(4): 496-505, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33941070

ABSTRACT

Antioxidant properties of rat galanin GWTLNSAGYLLGPHAIDNHRSFSDKHGLT-NH2 (Gal), N-terminal fragment of galanin (2-15 aa) WTLNSAGYLLGPHA (G1), and its modified analogue WTLNSAGYLLGPßAH (G2) were studied in vivo in the rat model of regional myocardial ischemia and reperfusion and in vitro in the process of Cu2+-induced free radical oxidation of human blood plasma low-density lipoproteins. Intravenous administration of G1, G2, and Gal to rats after ischemia induction reduced the infarction size and activities of the necrosis markers, creatine kinase-MB and lactate dehydrogenase, in blood plasma at the end of reperfusion. G1, G2, and Gal reduced formation of the spin adducts of hydroxyl radicals in the interstitium of the area at risk during reperfusion, moreover, G2 and Gal also reduced formation of the secondary products of lipid peroxidation in the reperfused myocardium. It was shown in the in vivo experiments and in the in vitro model system that the ability of galanin peptides to reduce formation of ROS and attenuate lipid peroxidation during myocardial reperfusion injury was not associated directly with their effects on activities of the antioxidant enzymes of the heart: Cu,Zn-superoxide dismutase, catalase, and glutathione peroxidase. The peptides G1, G2, and Gal at concentrations of 0.01 and 0.1 mM inhibited Cu2+-induced free radical oxidation of human low-density lipoproteins in vitro. The results of oxidative stress modeling demonstrated that the natural and synthetic agonists of galanin receptors reduced formation of the short-lived ROS in the reperfused myocardium, as well as of lipid radicals in blood plasma. Thus, galanin receptors could be a promising therapeutic target for cardiovascular diseases.


Subject(s)
Galanin/pharmacology , Lipid Peroxidation , Myocardial Reperfusion Injury/metabolism , Oxidative Stress , Administration, Intravenous , Animals , Antioxidants/administration & dosage , Antioxidants/pharmacology , Antioxidants/therapeutic use , Catalase , Copper/chemistry , Copper/toxicity , Free Radicals/toxicity , Galanin/administration & dosage , Galanin/therapeutic use , Glutathione Peroxidase , Heart/drug effects , Humans , Male , Myocardial Ischemia/chemically induced , Myocardial Ischemia/drug therapy , Myocardial Ischemia/metabolism , Myocardial Reperfusion Injury/chemically induced , Myocardial Reperfusion Injury/drug therapy , Myocardium/metabolism , Rats , Rats, Wistar , Superoxide Dismutase
4.
Clin Exp Pharmacol Physiol ; 46(12): 1174-1182, 2019 12.
Article in English | MEDLINE | ID: mdl-31429479

ABSTRACT

The mechanisms of protective action of the neuropeptide galanin and its N-terminal fragments against myocardial ischaemia/reperfusion (I/R) injury remain obscure. The aim of this work was to study effects of a novel peptide agonist of galanin receptors [ßAla14, His15]-galanin (2-15) (G1) and the full-length galanin (G2) on energy and antioxidant status of the heart with acute infarction. The peptides were synthesized by the automatic solid phase method using Fmoc technology. Their structure was identified by 1 H-NMR spectroscopy and MALDI-TOF mass spectrometry. Experiments were performed on anaesthetized open-chest rats subjected to myocardial regional ischaemia and reperfusion. Intravenous (iv) administration of optimal doses of peptides G1 and G2 (1.0 and 0.5 mg/kg, respectively, at the onset of reperfusion significantly reduced infarct size (on average by 40% compared with control) and the plasma activity of creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH). These effects were associated with augmented preservation of aerobic energy metabolism, increased activity of Cu,Zn superoxide dismutase (Cu,Zn-SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) and decreased lipid peroxidation in the area at risk (AAR) at the end of reperfusion. Peptide G1 showed more efficient recovery of the majority of metabolic and antioxidant parameters. The results provide evidence that the galaninergic system can be considered a promising target to reduce energy dysregulation and oxidative damage in myocardial I/R injury.


Subject(s)
Antioxidants/metabolism , Galanin/pharmacology , Myocardial Ischemia/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardium/metabolism , Receptors, Galanin/agonists , Animals , Galanin/chemistry , Galanin/therapeutic use , Heart/drug effects , Lipid Peroxidation/drug effects , Male , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Ischemia/drug therapy , Myocardial Ischemia/pathology , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/prevention & control , Oxidative Stress/drug effects , Oxidative Stress/physiology , Peptide Fragments/pharmacology , Peptide Fragments/therapeutic use , Rats , Rats, Wistar , Receptors, Galanin/metabolism , Signal Transduction/drug effects
5.
Peptides ; 111: 127-131, 2019 01.
Article in English | MEDLINE | ID: mdl-29730241

ABSTRACT

Agonists and antagonists for galanin receptor subtypes GalR1-3 can be used as putative therapeutics targets for the treatment of various human diseases. However, effects of galanin and its N-terminal fragments on myocardial ischemia/reperfusion injury remain unclear. This study was designed to assess the ability of the full-length galanin (GWTLNSAGYLLGPHAIDNHRSFSDKHGLT-NH2, G1), the natural fragments WTLNSAGYLL-NH2 (G2) and WTLNSAGYLLGPHA (G3), and their modified analogs WTLNAAGYLL (G4) and WTLNSAGYLLGPßAH (G5) to limit acute myocardial infarction in rats in vivo. The peptides G2-5 were synthesized by the automatic solid phase method using Fmoc technology, purified by preparative HPLC and identified by 1H NMR spectroscopy and MALDI -TOF mass spectrometry. The peptides G1-5 were administered by i.v. bolus injection at the onset of reperfusion at doses of 0.25, 0.50, 1.0, 2.0 or 3.0 mg/kg. The optimal doses of the peptides G1-5 significantly reduced the infarction area and decreased the activity of CK-MB and LDH in blood plasma at the end of reperfusion compared with the control. Among the peptides studied, G5 showed high efficacy in reducing the infarct size and the activity of necrosis markers in blood plasma with no significant effect on hemodynamic parameters. The results suggest that a novel agonist for galanin receptors G5 may be a promising tool for the treatment of myocardial ischemia/reperfusion (I/R) injury. Further studies are warranted to explore the stability of this peptide in blood plasma and mechanisms that contribute to its cardioprotective effects.


Subject(s)
Galanin/analogs & derivatives , Galanin/therapeutic use , Myocardial Infarction/drug therapy , Peptides/therapeutic use , Animals , Galanin/chemistry , Male , Myocardial Infarction/blood , Myocardial Infarction/metabolism , Myocardium/metabolism , Peptides/chemistry , Rats , Rats, Wistar , Receptors, Galanin/blood , Receptors, Galanin/metabolism
6.
Biomed Pharmacother ; 109: 1556-1562, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30551408

ABSTRACT

N-terminal fragments of galanin (2-11) and (2-15) are critical for binding to GalR1-3 receptors, members of the G-protein-coupled receptor superfamily, and are involved in myocardial protection against ischemia/reperfusion (I/R) injury. This study was designed to synthesize novel GalR1-3 agonists with improved properties and evaluate their efficiency as cardioprotective agents. Peptide agonists were synthesized by the automatic solid phase method using Fmoc technology and purified by preparative HPLC. Their chemical structure was identified by 1H-NMR spectroscopy and MALDI-TOF mass spectrometry. Novel ligands of galanin receptors have greater solubility in water than natural galanin fragments. Cardiac function indices, myocardial infarct size and plasma activity of creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH) were measured to assess the peptide bioactivity. Infusion of optimal concentrations of the peptides (210-240 µM) after global ischemia enhanced functional recovery of isolated rat heart during reperfusion. Intravenous administration of the peptides in a dose range of 1-2 mg/kg at the onset of reperfusion significantly reduced infarct size and plasma levels of CK-MB and LDH in rats in vivo. The chimeric ligand [ßAla14, His15]-galanin (2-15) exhibited the most beneficial effect on both models of I/R injury. The results suggest that pharmacological agonists of GalR1-3 receptors can be a rational basis for drug developments in the field of cardiovascular diseases.


Subject(s)
Galanin/metabolism , Myocardial Infarction/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardium/metabolism , Receptors, Galanin/metabolism , Animals , Cardiotonic Agents/pharmacology , Creatine Kinase, MB Form/metabolism , Disease Models, Animal , Heart/drug effects , L-Lactate Dehydrogenase/metabolism , Ligands , Male , Myocardial Infarction/drug therapy , Myocardial Reperfusion Injury/drug therapy , Rats , Rats, Wistar
7.
Oncotarget ; 8(60): 101659-101671, 2017 Nov 24.
Article in English | MEDLINE | ID: mdl-29254194

ABSTRACT

BACKGROUND AND PURPOSE: Galanin is an endogenous peptide involved in diverse physiological functions in the central nervous system including central cardiovascular regulation. The present study was designed to evaluate the potential effects of the short N-terminal galanin fragment 2-15 (G) on cardiac ischemia/reperfusion (I/R) injury. EXPERIMENTAL APPROACH: Peptide G was synthesized by the automatic solid phase method and identified by 1H-NMR spectroscopy and mass spectrometry. Experiments were performed on cultured rat cardiomyoblast (H9C2) cells, isolated perfused working rat hearts and anaesthetized open-chest rats. KEY RESULTS: Cell viability increased significantly after treatment with 10 and 50 nM of G peptide. In hypoxia and reoxygenation conditions, exposure of H9C2 cells to G peptide decreased cell apoptosis and mitochondrial reactive oxygen species (ROS) production. Postischemic infusion of G peptide reduced cell membrane damage and improved functional recovery in isolated hearts during reperfusion. These effects were accompanied by enhanced restoration of myocardial metabolic state. Treatment with G peptide at the onset of reperfusion induced minor changes in hemodynamic variables but significantly reduced infarct size and plasma levels of necrosis markers. CONCLUSION AND IMPLICATIONS: These findings suggest that G peptide is effective in mitigating cardiac I/R injury, thereby providing a rationale for promising tool for the treatment of cardiovascular diseases.

8.
Oncotarget ; 8(13): 21241-21252, 2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28177906

ABSTRACT

BACKGROUND AND PURPOSE: Galanin is a multifunctional neuropeptide with pleiotropic roles. The present study was designed to evaluate the potential effects of galanin (2-11) (G1) on functional and metabolic abnormalities in response to myocardial ischemia-reperfusion (I/R) injury. EXPERIMENTAL APPROACH: Peptide G1 was synthesized by the 9-fluorenylmethoxycarbonyl (Fmoc)-based solid-phase method. The chemical structure was identified by 1H-NMR spectroscopy and mass spectrometry. Experiments were conducted using a rat model of I/R injury in vivo, isolated perfused rat hearts ex vivo and cultured rat cardiomyoblast H9C2 cells in vitro. Cardiac function, infarct size, myocardial energy metabolism, hemodynamic parameters, plasma levels of creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH) were measured in order to evaluate the effects of G1 on myocardial I/R injury. KEY RESULTS: Treatment with G1 increased cell viability in a dose-dependent manner, inhibited cell apoptosis and excessive mitochondrial reactive oxygen species (ROS) production in response to oxidative stress in H9C2 cells. Pre- or postischemic infusion of G1 enhanced functional and metabolic recovery during reperfusion of the ischemic isolated rat heart. Administration of G1 at the onset of reperfusion significantly reduced infarct size and plasma levels of CK-MB and LDH in rats subjected to myocardial I/R injury. CONCLUSIONS AND IMPLICATIONS: These data provide the first evidence for cardioprotective activity of galanin G1 against myocardial I/R injury. Therefore, peptide G1 may represent a promising treatment strategy for ischemic heart disease.


Subject(s)
Galanin/pharmacology , Myocardial Reperfusion Injury/pathology , Animals , Apoptosis/drug effects , Cell Survival/drug effects , Disease Models, Animal , In Situ Nick-End Labeling , Isolated Heart Preparation , Male , Rats , Rats, Wistar
9.
Peptides ; 73: 67-76, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26348269

ABSTRACT

Exogenously administered chemically modified apelin-12 (MA) has been shown to exhibit protective effects in myocardial ischemia/reperfusion (I/R) injury. They include reduction of ROS formation, cell death and cardiometabolic abnormalities. The aim of the present study was to explore the role of the underlying signaling mechanisms involved in cardioprotection afforded by MA. Isolated perfused working rat hearts subjected to global ischemia and anaesthetized rats in vivo exposed to LAD coronary artery occlusion were used. Myocardial infarct size, cell membrane damage, cardiac dysfunction and metabolic state of the heart were used as indices of I/R injury at the end of reperfusion. Administration of specific inhibitors of MEK1/2, PI3K, NO synthase (NOS) or the mitochondrial ATP-sensitive K(+) (mito KATP) channels (UO126, LY294002, L-NAME or 5-hydroxydecanoate, respectively) reduced protective efficacy of MA in both models of I/R injury. This was evidenced by abrogation of infarct size limitation, deterioration of cardiac function recovery, and attenuation of metabolic restoration and sarcolemmal integrity. An enhancement of functional and metabolic recovery in isolated reperfused hearts treated with MA was suppressed by U-73122, chelerythrine, amiloride or KB-R7943 (inhibitors of phospholipase С (PLC), protein kinase C (PKC), Na(+)/H(+) or Na(+)/Ca(2+) exchange, respectively). Additionally, co-infusion of MA with amiloride or L-NAME reduced the integrity of cell membranes at early reperfusion compared with the effect of peptide alone. In conclusion, cardioprotection with MA is mediated by signaling via PLC and survival kinases, PKC, PI3K, and MEK1/2, with activation of downstream targets, NOS and mito KATP channels, and the sarcolemmal Na(+)/H(+) and Na(+)/Ca(2+) exchangers.


Subject(s)
Intercellular Signaling Peptides and Proteins/pharmacology , Myocardial Reperfusion Injury/prevention & control , Myocardium/metabolism , Signal Transduction/drug effects , Animals , Cell Membrane/metabolism , Cell Membrane/pathology , Intercellular Signaling Peptides and Proteins/chemistry , Male , Muscle Proteins/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardium/pathology , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism
10.
J Pharmacol Pharmacother ; 4(3): 198-203, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23960425

ABSTRACT

OBJECTIVE: To examine cardioprotective effects of Ρ-terminal fragment of adipokine apelin-12 (A12), its novel structural analogue [MeArg(1), NLe(10)]-A12 (I), and [d-Ala(12)]-A12 (II), a putative antagonist of APJ receptor, employing in vivo model of ischemia/reperfusion (I/R) injury. MATERIALS AND METHODS: Peptides were synthesized by the automatic solid phase method using Fmoc technology. Anesthetized open-chest male Wistar rats were subjected to left anterior descending (LAD) coronary artery occlusion and coronary reperfusion. Hemodynamic variables and electrocardiogram (ECG) were monitored throughout the experiment. Myocardial injury was assessed by infarct size (IS), activity of necrosis markers in plasma, and metabolic state of the area at risk (AAR). RESULTS: Intravenous injection of A12, I, or II at the onset of reperfusion led to a transient reduction of the mean arterial pressure. A12 or I administration decreased the percent ratio of IS/AAR by 40% and 30%, respectively, compared with control animals which received saline. Both peptides improved preservation of high-energy phosphates, reduced lactate accumulation in the AAR, and lowered CK-MB and LDH activities in plasma at the end of reperfusion compared with these indices in control. Treatment with II did not significantly affect either the IS/AAR, % ratio, or activities of both markers of necrosis compared with control. The overall metabolic protection of the AAR in the treated groups increased in the following rank: II < A12 < I. CONCLUSIONS: The structural analogue of apelin-12 [MeArg(1), NLe(10)]-A12 may be a promising basis to create a new drug for the treatment of acute coronary syndrome.

SELECTION OF CITATIONS
SEARCH DETAIL
...